
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatik

Design and prototypical implementation of a
model-based structure for the definition and

calculation of Enterprise Architecture Key
Performance Indicators

Thomas Reschenhofer

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatik

Design and prototypical implementation of a
model-based structure for the definition and

calculation of Enterprise Architecture Key
Performance Indicators

Konzeption und prototypische Implementierung
einer Modell-basierten Struktur zur

Definition und Berechnung von
Unternehmensarchitekturkennzahlen

Author: Thomas Reschenhofer
Supervisor: Prof. Dr. Florian Matthes
Advisor: Dipl. Inform.-Univ. Ivan Monahov
Date: September 10, 2013

I assure the single handed composition of this master’s thesis only supported by declared
resources

München, September 10, 2013 Thomas Reschenhofer

Abstract

Due to the increasing complexity in Enterprise Architectures (EA), organization-specific
Key Performance Indicators (KPI) are an important tool for the measurement of certain
EA characteristics, and hence support the understanding of the EA’s structure and its dy-
namics. Therefore, our group developed a method for defining EAM KPIs based on an
uniform and configurable structure as well as a catalog consisting of concrete KPIs gath-
ered from literature and industry. Furthermore, in previous research, we implemented the
prototype of a model-based expression language (MxL), which empowers business users
to formally define KPIs allowing tool-supported evaluation of EAM KPIs.
However, the design method for defining EAM KPIs is still lacking a proper implemen-
tation, which supports the enterprise architect in selecting, instantiating, and configuring
KPIs based on the structure and catalog developed by our group. Moreover, the imple-
mentation has to support the adaption of the KPIs to a given organization-specific context.
Therefore, this thesis examines the shortcomings of the initial language design of MxL and
its implementation regarding their suitability for the implementation of the EAM KPI def-
inition design method. Based on these shortcomings, the thesis focuses on the reengineer-
ing of MxL and its implementation on the one hand, and the extension of the prototype to
allow the implementation of both the EAM KPI structure and the EAM KPI Catalog on the
other hand.
The result of the thesis is a prototype supporting all steps of the design method for defining
EAM KPIs, i.e. enterprise architects can choose from existing KPIs from the catalog and
adapt them to organization-specific needs without violating the enviroments consistency.
Hence, the prototype is a first step towards an integrated EAM environment supporting
enterprise architects to define, document, evaluate, and interpret EAM KPIs.

vii

viii

Contents

Abstract vii

I. Introduction 1

1. Introduction & Motivation 3
1.1. Enterprise Architecture Management . 3
1.2. Key Performance Indicators . 4
1.3. Motivation & Approach of the thesis . 5

2. Foundations 7
2.1. EAM KPI structure . 7

2.1.1. General structure elements . 7
2.1.2. Organization-specific structure elements 9
2.1.3. Design method for defining EAM KPIs 11

2.2. Tricia . 12
2.2.1. Architecture . 12
2.2.2. Hybrid wikis . 14

2.3. MxL 1.0 . 15
2.3.1. Fundamentals of MxL 1.0 . 16
2.3.2. Use cases of MxL 1.0 . 18

2.4. Shortcomings of existing foundations . 19
2.4.1. No compile-time analysis of MxL expressions 19
2.4.2. Tight coupling between MxL 1.0 and Tricia 20
2.4.3. Missing type-based template engine in Tricia 20
2.4.4. Insufficient deployment support in Tricia 20

II. Contribution of the Thesis 23

3. MxL 2.0 25
3.1. Fundamentals of MxL 2.0 . 25

3.1.1. MxL 2.0 types . 25
3.1.2. Basic language constructs . 25
3.1.3. Higher-order functions in MxL 2.0 . 29
3.1.4. Sequence functions . 30
3.1.5. MxL Asset Hierarchy . 35
3.1.6. Querying the information model . 37

3.2. Interpretation . 39

ix

Contents

3.2.1. Scanner & Parser . 39
3.2.2. AST & Expression objects . 40
3.2.3. MxL Connector . 42
3.2.4. Type Checker . 42
3.2.5. Evaluation engine . 49

3.3. TxL 2.0 - MxL 2.0’s implementation in Tricia 50
3.3.1. MxL Connector for Tricia . 50
3.3.2. Basic MxL infrastructure in Tricia . 51
3.3.3. Derived attributes and custom functions 52
3.3.4. Embedded expressions . 54
3.3.5. Compile-time analysis of MxL expressions in Tricia 56

4. Towards Living KPIs 59
4.1. Implementation of a type-based template engine 59

4.1.1. Existing template engine . 59
4.1.2. Type-based template engine . 59
4.1.3. Example of a page template . 62

4.2. Deployment of Tricia applications . 62
4.2.1. Existing import types . 64
4.2.2. Initial data definition . 65
4.2.3. Initial data processing . 68
4.2.4. Back tracking of changes on initial data sets 70

4.3. Prototype of the Living KPIs . 70
4.3.1. Implementation of KPIs as MxL 2.0 custom functions 71
4.3.2. Page template for EAM KPI descriptions 72
4.3.3. EAM KPI Catalog data . 72

III. Results 77

5. Summary & Conclusion 79
5.1. Summary . 79
5.2. Conclusion . 80

6. Outlook & Future research 83
6.1. Authorization in MxL 2.0 . 83

6.1.1. Problem / Open issue . 83
6.1.2. Proposed solution . 83

6.2. Evaluating identity . 84
6.2.1. Problem / Open issue . 84
6.2.2. Proposed solution . 85

6.3. Evaluation strategy . 85
6.3.1. Problem / Open issue . 85
6.3.2. Proposed solution . 86

6.4. History of evaluation results . 87
6.4.1. Problem / Open issue . 87

x

Contents

6.4.2. Proposed solution . 87
6.5. Visualization of evaluation and type checking results 88

6.5.1. Problem / Open issue . 89
6.5.2. Proposed solution . 89

6.6. Query processing . 90
6.6.1. Problem / Open issue . 90
6.6.2. Proposed solution . 91

6.7. Fully supported Living KPIs . 91
6.7.1. Problem / Open issue . 92
6.7.2. Proposed solution . 92

Bibliography 95

xi

Part I.

Introduction

1

1. Introduction & Motivation

This chapter motivates the thesis by introducing the area of Enterprise Architecture Man-
agement (Section 1.1) explaining the relevance of Key Performance Indicators in this area,
and emphasizing the need for an integrated environment for the management and calcu-
lation of these Key Performance Indicators and their information model (Section 1.2).
Subsequently, Section 1.3 highlights the gap between existing theoretical foundations and
proper tool support, and states how this thesis wants to close this gap.

1.1. Enterprise Architecture Management

An Enterprise Architecture (EA) is the holistic structure of an enterprise as a socio-technical
system embodied in its components and their relationships [1], covering all areas of an
enterprise from business to information technology (IT) aspects. Holism is a system-
theoretical property meaning that a system is more than the sum of its parts, i.e. the system
and its behavior cannot be deduced from the properties of its elements alone. Applied onto
an EA holism means, that it is not sufficient to observe just the single elements of the EA
to understand the behavior of the whole system.
Since the enterprise’s environment changes continuously (e.g., variable customer demands,
technology innovation, and changing legal conditions), it’s necessary to adapt the EA to
these changes[2]. However, the ever-growing complexity of an EA as well as its holism
makes it difficult to understand the EA and its dynamics on the one hand, and hence to
adapt the EA to a new environment on the other hand. This yields to several downsides,
e.g., loss of transparency, increased complexity costs and risks, or distraction from core
business problems.
Enterprise Architecture Management (EAM) is a holistic way to plan, develop and control
an EA’s evolution to ensure its flexibility, efficiency and transparency[2]. Therefore, EAM
supports the enterprise architect in his understanding of the EA and its behavior and – in
the end – has a positive impact onto the business performance, as shown in Figure 1.1.
Because of the growth of complexity of EAs, tools supporting EAM are becoming more and
more important [3]. These EAM tools [4] provide methods for gathering the EA model’s
data, modeling techniques for the EA and guidelines for its visualization [5, 6, 7].
However, although the information sources in EAM are very unstructured (e.g., spread-
sheets, slides, documents) and shared among a multitude of stakeholders [8], the informa-
tion structures and collaboration mechanisms provided by prevalent EAM tools are rather
rigid, which yields to a major problem in EAM [9]. Therefore a wiki-based approach to
EAM called Wiki4EAM was developed at the chair for Software Engineering for Business
Information Systems (sebis)1 at the Technical University Munich (TUM) in 2010, which
allows an incremental and collaborative enrichment of initially unstructured information

1http://wwwmatthes.in.tum.de

3

http://wwwmatthes.in.tum.de

1. Introduction & Motivation

Enterprise
Architecture
Management

Efficient
resource
allocation

Creation of
synergies

Better
alignment

Reduced
complexity

Documented
architecture

vision

Architecture
principles and

standards

Architectural
transparency

Support of
business
strategies

Faster strategic
change

Efficient
operating costs

structure

Better business
performance

Figure 1.1.: The effects of Enterprise Architecture Management according to Ahlemann et
al. [2]

sources with attributes, types and integrity rules. The model-based enterprise wiki system
Tricia2, which is used for this approach, as well as the so-called Hybrid Wikis are subject
in Section 2.2.

1.2. Key Performance Indicators

As already stated, controlling is an important function of EAM. However, in order to con-
trol the EA, it’s necessary to monitor, measure, and evaluate certain performance-related
EA characteristics [10]. Such metrics are called Key Performance Indicators (KPIs) and are
able to qualitatively assess the EA itself as well as the achievement of predefined EAM
goals.
However, although KPIs are essential for the validation of goal achievements and the de-
velopment of meaningful value propositions [11], there exists no common structure tai-
lored to the definition and documentation of EAM KPIs [12]. Therefore, our group de-
veloped an uniform and configurable EAM KPI structure consisting of general structure
elements as well as organization-specific structure elements. Furthermore, our group pub-
lished a EAM KPI Catalog [13] (in the remainder of the thesis I refer to this source as
”catalog”), which defines 52 KPIs gathered from literature and industry partners based
on the EAM KPI structure. This structure as well as the catalog enable enterprise archi-
tects, IT managers, and business domain experts to quantify and measure their EAM goal
achievements and compare them to each other. Moreover, Matthes et al. [14] introduced
a design method for the definition of EAM KPIs, guiding all the stakeholders involved in
the definition of EAM KPIs through a process consisting of four design steps and based on
both the EAM KPI structure and catalog. In Section 2.1, the EAM KPI structure as well as
the design method for defining EAM KPIs will be described in more detail.
Although each KPI in the catalog consists of a very detailed and structured description, a

2http://infoAsset.de

4

http://infoAsset.de

1.3. Motivation & Approach of the thesis

formal specification of how to calculate a KPI was still missing until recently. For this pur-
pose, a domain-specific language (DSL) named Model-based Expression Language (MxL) was
developed by Monahov et al. [15]. By the use of this DSL, all the catalog’s KPIs are defin-
able in a formal way by stating the calculation prescription as MxL expression, which fur-
thermore enables an automated and tool-supported evaluation of these KPIs. Section 2.3
describes the language MxL itself as well as its prototypical implementation and integra-
tion into the model-based wiki system Tricia.

1.3. Motivation & Approach of the thesis

On the one hand, although the EAM KPI Catalog provides a structured set of 52 EAM
KPIs gathered from industry and literature, it still lacks a proper implementation and tool
integration.
On the other hand, the model-based wiki system Tricia already provides the modeling
capabilities required for the implementation of the catalog’s integrated information model
as well as a DSL (MxL) to perform queries and arithmetic calculations onto this model’s
data. However, MxL in its current version does not provide mechanisms to analyze MxL
expressions to determine the information model elements required to successfully evaluate
the KPI represented by an expression. Furthermore, Tricia does not provide a engine to
define a flexible and easily adaptable template for the EAM KPI structure.
To close this gap, this thesis covers the design and prototypical implementation of a model-
based EAM environment, which is

integrated, i.e., there is one common platform for the collaborative gathering of the EA’s
data, its management, and the definition, management, and automated evaluation
of proper KPIs

based on the EAM KPI structure and the catalog, i.e., all the catalog’s KPIs and their
descriptions as well as the catalog’s integrated data model are initially implemented
in the platform. Furthermore, the layout and design of the KPI descriptions in the
platform should be deduced from the EAM KPI structure as developed by Matthes
et al. Ma12e, i.e. the platform is an approach towards ”Living KPIs” and hence im-
mediately familiar to users who already know the EAM KPI structure or the catalog.

flexible/adaptable in the sense that the EAM environment and its information model are
easily adaptable to a organization-specific context (e.g., by removing KPIs and/or
model elements not needed by the enterprise) while retaining the integrity of the in-
formation model and the formal specifications of each KPI’s computation prescrip-
tion

By fulfilling these three requirements, this environment will be able to support the entire
design method for defining EAM KPIs as described in Subsection 2.1.3.
In the remainder of the thesis this environment will be called the ”Living KPIs”. While the
next chapter describes the foundations on which the Living KPIs will be based on, as well
as their shortcomings, the whole Part II will cover the main contribution of of the thesis,
which is the implementation of a prototype of the Living KPIs.

5

1. Introduction & Motivation

6

2. Foundations

As stated in Chapter 1, the goal of the thesis is the implementation of a prototype for the
Living KPIs - an integrated and flexible EAM platform based on the EAM KPI structure.
The foundations of this platform are the EAM KPI structure (c.f. Section 2.1), the model-
based wiki system Tricia (c.f. Section 2.2), and the domain-specific language MxL (c.f.
Section 2.3).
However, Section 2.4 will come to the conclusion, that these three components are still
lacking some essential features in order to reach the goal of the thesis.

2.1. EAM KPI structure

As stated in section:kpi, the EAM KPI structure [12] enables an uniform description, defini-
tion, and documentation of EAM KPIs, whereas the EAM KPI Catalog [13] defines 52 KPIs
based on this structure. Figure 2.1 shows an exemplary instance of one of the catalog’s
KPIs.
The catalog’s KPIs are organized by an uniform KPI description template providing gen-
eral structure elements (GSEs) as well as organization-specific structure elements (OSSEs) [12]
for the structured description of each KPI. This structure ensures consistency among all of
the catalog’s KPIs and simplifies and unifies the adaption of a KPI to an organization-
specific context.

2.1.1. General structure elements

The following GSEs are independent from the enterprise, in which the KPIs should be
applied:

Title A unique name and at the same time a very short description of the purpose of the
KPI

Description A more detailed description of the KPI and its purpose

Goals Each KPI is related to at least one of ten distinct EAM goals, which are based on
the findings of Buckl et al. [1].

Calculation The calculation of a KPI provides a textual and informal prescription, how
the KPI has to be calculated based on a certain information model

Source The origin of the KPI may be either literature or practice (industry partner)

Layers Each of the catalog’s KPIs can be be assigned to one or more EA layers and cross
functions, which are depicted in Figure 2.2 and based on Wittenburg [16]. This as-
signment may be helpful to decide whether or not a KPI can be employed at all.

7

2. Foundations

Application continuity plan availability

A measure of how completely IT continuity plans for business critical applications have been

drawn and tested up for the IT’s application portfolio.

Description

Ensure compliance

Foster innovation

Improve capability

 provision

Improve project

 execution

Increase disaster

 tolerance

Increase homogeneity

Increase management

 satisfaction

Increase transparency

Reduce operating cost

Reduce security

 breaches

Goals

The number of critical

applications where

tested IT continuity

plan available divided

by the total number of

critical applications.

Calculation

EAM-KPI-0001

Code

Mapping:

Organization-specific instantiation

Name in model Mapped name Contacts Data sources

Business application Application J. Doe EA repository

isCritical criticality J. Doe EA repository

covered by covers R. Miles Risk Mgmt. rep.

IT continuity plan Disaster plan R. Miles Risk Mgmt. rep.

isTested tested R. Miles Risk Mgmt. rep.

KPI property Property value Best-practice

Measurement frequency Yearly Quarterly

Interpretation Good > 80%
Normal 60% - 80%
Problematic < 60%

KPI consumer J. Smith

KPI owner J. Doe

Target value 100% in 2015 80%

Planned value(s) 25% in 2013

75% in 2014

70%, 75%

Tolerance value(s) 5%

Escalation rule n.a.

CobiT 4.0

Sources

Information model

Properties:

Layers

S
tr

a
te

g
ie

s
 &

 P
ro

je
c
ts

P
ri

n
c
ip

le
s
 &

 S
ta

n
d
a
rd

s
 Business Capabilities

Organization & Processes

Business Services

Application & Information

Infrastructure Services

Infrastructure & Data

V
is

io
n
s
 &

 G
o
a
ls

Q
u
e
s
ti
o
n
s
 &

 K
P

Is

Figure 2.1.: An exemplary KPI instance of the EAM KPI Catalog [13] demonstrating the
EAM KPI structure [12]

8

2.1. EAM KPI structure

V
is

io
n

s
&

 G
o

al
s

Q
u

er
st

io
n

s
&

 K
P

Is

St
ra

te
gi

es
 &

 P
ro

je
ct

s

P
ri

n
ci

p
le

s
&

 S
ta

n
d

ar
d

s

Business Capability

Business & Organization

Business Service

Application & Information

Infrastructure Service

Infrastructure & Data

Figure 2.2.: EA layers and cross function based on Wittenburg [16]

Information model A KPI’s information model describes the entities, relations, and at-
tributes, which are required to compute the KPI. Figure 2.3 depicts an integrated
data model combining the information model of each of the catalog’s KPIs.

2.1.2. Organization-specific structure elements

In contrast to GSEs, OSSEs are dependent on the organizational context, i.e. the values of
OSSEs will differ from enterprise to enterprise, since they are organization-specific prop-
erties. The OSSEs of the catalog are the following:

Measurement frequency This structure element defines, how often the KPI has to be
evaluated

Interpretation The interpretation is a short description of how the calculated KPI value
has to be interpreted, which value is good, acceptable, or bad (which could be visu-
alized by traffic lights)

KPI consumer The KPI consumer is the person who is actually interested in the value of
the KPI

KPI owner The KPI consumer is the person who is responsible for the KPI, i.e. the owner
has to ensure the availability of the KPI’s input data and the KPI’s applicability

Target value This is the value, which has to be achieved

Planned value(s) This are milestones between the current value and the target value

Tolerance value(s) This element determines the allowed deviations from planned and
target values

Escalation rule The escalation rule specifies the steps to be taken in case of a foreseeable
non-achievement of the target EAM goals

In addition to these organization-specific properties, each KPI consists of a mapping ta-
ble allowing the linking from the catalog’s information model elements to organization-
specific concepts. Of course, since each of the catalog’s KPIs operates on different infor-
mation model elements, this mapping table differs from KPI to KPI.

9

2. Foundations

B
u
si
n
e
ss
A
p
p
lic
at
io
n

+i
sC

ri
ti

ca
l :

 B
o

o
le

an
+n

am
e

: S
tr

in
g

+i
sP

ro
d

u
ct

io
n

Si
n

ce
 :

D
at

e
+i

sC
o

m
p

lia
n

tW
it

h
IT

A
rc

h
it

ec
tu

re
 :

B
o

o
le

an
+i

sC
o

m
p

lia
n

tW
it

h
Te

ch
n

o
lo

gy
St

an
d

ar
d

 :
B

o
o

le
an

IT
C
o
n
ti
n
u
it
yP
la
n

+i
sT

es
te

d
 :

B
o

o
le

an
+d

es
cr

ip
ti

o
n

 :
St

ri
n

g

1..*

0
..

1 3
 c

o
ve

re
d

 b
y

R
o
le

+i
sK

ey
R

o
le

[1
]

: B
o

o
le

an
+r

o
le

Ty
p

e[
1

]
: R

o
le

Ty
p

e
+t

ar
ge

tN
u

m
b

er
[0

..
1

]
: N

u
m

b
er

+n
am

e[
1

]
: S

tr
in

g

Em
p
lo
ye
e

+n
am

e
: S

tr
in

g
+i

sI
n

te
rn

al
 :

B
o

o
le

an

0
..

*

0
..

*

3
 q

u
al

if
ie

s
fo

r
b

ac
ku

p
1

..
*

0..*

is
 a

ss
ig

n
ed

 t
o
4

Se
rv
ic
e
P
o
rt
fo
lio

M
e
th
o
d
o
lo
gy

+n
am

e
: S

tr
in

g

Se
rv
ic
e

+n
am

e
: S

tr
in

g

0
..

1

0
..

*

3
 a

n
al

yz
es

P
ro
je
ct

+n
am

e
: S

tr
in

g
+d

es
cr

ip
ti

o
n

 :
St

ri
n

g
+i

sC
au

se
d

B
yB

ad
Sp

ec
 :

B
o

o
le

an
+i

sS
tr

at
eg

ic
 :

B
o

o
le

an
+i

sI
n

Ti
m

e
: B

o
o

le
an

+i
sI

n
B

u
d

ge
t

: B
o

o
le

an
+i

sI
n

Q
u

al
it

iy
 :

B
o

o
le

an
+i

sC
o

m
p

lia
n

tT
o

Ta
rg

et
A

rc
h

it
ec

tu
re

 :
B

o
o

le
an

+i
sI

n
n

o
va

ti
ve

 :
B

o
o

le
an

+i
sM

ai
n

te
n

an
ce

 :
B

o
o

le
an

0
..

*

1
..

*

ch
an

ge
s4

Ti
m
e
Sh
e
e
t

+h
o

u
rs

 :
N

u
m

b
er

+s
al

ar
yP

er
H

o
u

r
: N

u
m

b
er

1
..

1

1
..

*

3
 h

as

0
..

*

1..1

h
as
4

B
u
si
n
e
ss
C
as
e

+R
O

Ia
tP

ro
je

ct
P

ro
p

o
sa

l :
 N

u
m

b
er

+R
O

Ia
tP

ro
je

ct
En

d
 :

N
u

m
b

er

0
..

1

1
..

1
en

ab
le

s4

0..*

1..*

as
si

gn
ed

 t
o
4

R
u
le

+t
ar

ge
tV

al
u

e
: N

u
m

b
er

0
..

*

0
..

*

fu
lf

ill
s

ta
rg

et
 v

al
u

e4

P
M
G
u
id
e
lin

e

1
..

*

1
..

1
3

 is
 p

ar
t

o
f

SL
A

+i
sM

et
 :

B
o

o
le

an
+d

es
cr

ip
ti

o
n

 :
St

ri
n

g

Fo
re
ca
st

+f
o

re
ca

st
V

al
u

e
: N

u
m

b
er

R
e
p
o
rt

+a
ct

u
al

C
o

st
s

: N
u

m
b

er

0..*0
..

*

h
as
4

1
..

1
0

..
*

3
 g

u
ar

an
te

ed
 b

y

C
ri
ti
ca
lit
yR

at
in
g

+d
es

cr
ip

ti
o

n
 :

St
ri

n
g

1..1

0
..

1

3
 is

 e
va

lu
at

ed
 b

y

In
ci
d
e
n
t

+s
ev

er
it

y
: S

ev
er

it
y

+s
ta

rt
Ti

m
e

: D
at

e
+e

n
d

Ti
m

e
: D

at
e

+r
ep

o
rt

ed
A

t
: D

at
e

+s
ta

tu
s

: S
ta

tu
s

+w
as

R
eo

p
en

ed
 :

B
o

o
le

an

«
en

u
m

er
at

io
n

»
Se
ve
ri
ty

+h
ig

h
+m

id
d

le
+l

o
w

P
ro
ce
ss

+i
sS

ta
n

d
ar

d
 :

B
o

o
le

an
+n

am
e

: S
tr

in
g

+i
sC

ri
ti

ca
l :

 B
o

o
le

an
+i

sM
o

n
it

o
re

d
 :

B
o

o
le

an

0
..

*
0

..
*

co
m

p
lie

s
to
4

IT
R
is
k

+i
d

en
ti

fi
ed

 :
B

o
o

le
an

+o
cc

u
rr

ed
 :

B
o

o
le

an
+i

sC
ri

ti
ca

l :
 B

o
o

le
an

R
e
gu
la
ti
o
n

+n
am

e
: S

tr
in

g

A
u
d
it

+f
in

d
in

gs
[0

..
*]

 :
St

ri
n

g
+i

sI
n

te
rn

al
[1

]
: B

o
o

le
an

0
..

*
1

..
1

3
 t

es
ts

 a
d

h
er

en
ce

 t
o

K
P
I

+f
re

q
u

en
cy

 :
St

ri
n

g
+t

ar
ge

tV
al

u
e

: N
u

m
b

er
+i

sM
et

 :
B

o
o

le
an

1
..

*0
..

*

m
ea

su
re

d
 b

y4

Q
u
al
it
yP
la
n

+d
es

cr
ip

ti
o

n
 :

St
ri

n
g

1..1

0
..

1
3

 c
o

n
fo

rm
s

to

«
en

u
m

er
at

io
n

»
R
o
le
Ty
p
e

+q
u

al
it

y
m

an
ag

er
+p

ro
je

ct
 m

an
ag

er
+o

th
er

1..*

0
..

*

re
sp

o
n

si
b

le
 f

o
r4

Sk
ill
P
ro
fi
le

+d
es

cr
ip

ti
o

n
 :

St
ri

n
g

1..1

0
..

1
re

q
u

ir
es
4

Sk
ill

+d
es

cr
ip

ti
o

n
 :

St
ri

n
g

0
..

* 1
..

*

co
n

si
st

s
o

f4

0..*

1
..

*

3
 h

as

Em
p
lo
ye
e
Sa
ti
sf
ac
ti
o
n
V
al
u
e

+v
al

u
e

: N
u

m
b

er

1..1

0
..

*

3
 s

u
b

m
it

s

Em
p
lo
ye
e
Sa
ti
sf
ac
ti
o
n
Su
rv
e
y

+n
am

e
: S

tr
in

g

0
..

*
1

..
1 3

 b
el

o
n

gs
 t

o

St
at
u
s

+i
sC

o
m

p
le

te
d

 :
B

o
o

le
an

0
..

1

1..1 3
 h

as

IT
Tr
ai
n
in
gP
la
n

+i
te

m
s[

1
..

*]
 :

St
ri

n
g

1
..

1
1

..
*

3
 b

el
o

n
gs

 t
o

B
u
si
n
e
ss
D
o
m
ai
n

+n
am

e
: S

tr
in

g

Ta
rg
e
tA
rc
h
it
e
ct
u
re

+d
es

cr
ip

ti
o

n
 :

St
ri

n
g

1
..

*
0

..
1

co
ve

re
d

 b
y4

A
p
p
lic
at
io
n
P
o
rt
fo
lio

M
e
th
o
d
o
lo
gy

+n
am

e
: S

tr
in

g 0
..

1

0
..

*

3
 a

n
al

yz
es

0
..

*

0
..

*

3
 c

o
m

p
lie

s
to

Te
ch
n
o
lo
gy
St
an

d
ar
d

+d
es

cr
ip

ti
o

n
 :

St
ri

n
g

0..*

0
..

*

co
m

p
lie

s
to
4

Fe
as
ib
ili
ty
St
u
d
y

+d
el

iv
er

ed
O

n
B

u
d

ge
d

 :
B

o
o

le
an

+d
el

iv
er

ed
O

n
Ti

m
e

: B
o

o
le

an

St
ak
e
h
o
ld
e
r

+n
am

e
: S

tr
in

g

IT
R
e
sp
o
n
si
ve
n
e
ss
Sa
ti
sf
ac
ti
o
n

+i
sS

at
is

fi
ed

 :
B

o
o

le
an

1
..

1

0
..

*

su
b

m
it

s4

IT
R
e
sp
o
n
si
ve
n
e
ss
Su
rv
e
y

+n
am

e
: S

tr
in

g
0

..
*

1
..

1

b
el

o
n

gs
 t

o
4

A
ss
e
ss
m
e
n
t

+v
al

u
eA

tP
ro

je
ct

St
ar

t
: N

u
m

b
er

+v
al

u
eA

tP
ro

je
ct

En
d

 :
N

u
m

b
er

1
..

*

1
..

1

3
 a

ff
ec

ts

EA
El
e
m
e
n
t

+n
am

e
: S

tr
in

g

1
..

1

0
..

*

3
 a

ff
ec

ts

IT
In
ve
st
m
e
n
t

+b
u

d
ge

t
: N

u
m

b
er

1..*

1
..

1
fu

n
d

s4

R
e
su
lt

+p
as

se
d

 :
B

o
o

le
an

0
..

*

1..1

3
 p

as
se

s

B
ac
kg
ro
u
n
d
C
h
e
ck

+d
es

cr
ip

ti
o

n
 :

St
ri

n
g

1
..

1
0

..
*

3
 b

el
o

n
gs

 t
o

0
..

*

1..1

3
 b

el
o

n
gs

 t
o

A
ct
io
n
P
la
n

+d
es

cr
ip

ti
o

n
 :

St
ri

n
g

1
..

*
0

..
*

3
 p

re
ve

n
ts

Fe
as
ib
ili
ty
St
u
d
yS
at
is
fa
ct
io
n

+i
sS

at
is

fi
ed

 :
B

o
o

le
an

1
..

1
0

..
*

su
b

m
it

s4

Fe
as
ib
ili
ty
st
u
d
yS
u
rv
e
y

+n
am

e
: S

tr
in

g
0

..
*

1
..

1

b
el

o
n

gs
 t

o
4

P
ro
cu
re
m
e
n
t

+d
es

cr
ip

ti
o

n
 :

St
ri

n
g

P
ro
cu
re
m
e
n
tP
o
lic
y

+d
es

cr
ip

ti
o

n
 :

St
ri

n
g

0
..

1
0

..
*

co
m

p
lie

s
to
4

1
..

*

0
..

*
u

se
s4

Tr
ai
n
in
g

+c
o

n
te

n
t

: S
tr

in
g

0
..

*

1..* p
ar

ti
ci

p
at

es
 in
4

0
..

*

1..1

in
d

ro
d

u
ce

s4

R
e
co
rd

+i
sC

au
se

d
B

yB
ad

Tr
ai

n
in

g
: B

o
o

le
an

+d
es

cr
ip

ti
o

n
 :

St
ri

n
g

0
..

1

1..1

d
o

es
4

Se
rv
ic
e
D
e
sk

+c
o

n
ta

ct
D

at
a

: S
tr

in
g

1
..

1
0

..
*

b
el

o
n

gs
 t

o
4

0
..

11..*

in
 c

h
ar

ge
 o

f4

B
u
si
n
e
ss
P
ro
ce
ss

+i
sC

ri
ti

ca
l :

 B
o

o
le

an

0..*

1
..

*

3
 r

el
ie

s
o

n In
te
rr
u
p
ti
o
n

+i
sE

xp
ec

te
d

 :
B

o
o

le
an

+i
n

te
rr

u
p

ti
o

n
Fr

o
m

 :
D

at
e

+i
n

te
rr

u
p

ti
o

n
To

 :
D

at
e

0
..

*

1
..

1

3
 in

te
rr

u
p

ts

U
se
r

+n
am

e
: S

tr
in

g
+p

as
sw

o
rd

 :
St

ri
n

g

P
as
sw

o
rd
St
an

d
ar
d

+d
es

cr
ip

ti
o

n
 :

St
ri

n
g

0
..

*
0

..
1

co
m

p
lie

s
to
4

«
en

u
m

er
at

io
n

»
St
at
u
s

+n
ew

+i
n

 w
o

rk
+r

eo
p

en
ed

+s
o

lv
ed

IT
C
o
m
p
o
n
e
n
t

+i
sS

ta
n

d
ar

d
 :

B
o

o
le

an

IT
C
o
m
p
o
n
e
n
tC
at
e
go
ry

+n
am

e
: S

tr
in

g

0
..

1
0

..
*

b
el

o
n

gs
 t

o
4

C
u
st
o
m
e
r

+n
am

e
: S

tr
in

g

C
u
st
o
m
e
rS
at
is
fa
ct
io
n
V
al
u
e

+v
al

u
e

: N
u

m
b

er

C
u
st
o
m
e
rS
at
is
fa
ct
io
n
Su
rv
e
y

+n
am

e
: S

tr
in

g

1
..

1
0

..
*

3
 s

u
b

m
it

s
0

..
*

1
..

1
3

 b
el

o
n

gs
 t

o

Figure 2.3.: UML class diagram [17] of the EAM KPI catalog’s integrated data model

10

2.1. EAM KPI structure

Map
EAM goal

Configure
EAM KPI

Define EAM
KPI

Select EAM
KPI

Configured
KPI structure

Instantiated
KPI structure

[suitable
KPI exists]

Examine
EAM KPI
catalog

Adapt
EAM KPI

EAM KPI
catalog

[partly suitable
KPI exists]

Instantiated
KPI structure

EAM KPI
catalog

EAM KPI
catalog

Instantiated
KPI structure

Instantiated
KPI structure

Plain
KPI structure

Enterprise architect,
KPI stakeholder

Enterprise
architect

Enterprise architect,
KPI stakeholder

Enterprise architect,
KPI stakeholder,

KPI steward

[no suitable
KPI exists]

Plain KPI
structure

Figure 2.4.: UML activity diagram [17] showing the design method for defining an EAM
KPI by Matthes et al. [14]

2.1.3. Design method for defining EAM KPIs

In practice, an enterprise architect won’t implement all KPIs from the catalog, but he will
search for the ”right” candidates KPIs to measure the achievement of his organization-
specific goals. In order to support the definition of EAM KPIs based on the EAM KPI
structure as well as the catalog, our group developed a design method (depicted in Fig-
ure 2.4) consisting of the following four design steps [14]:

Map EAM goal The first activity is the determination of the EAM goals, which have to be
achieved

Examine EAM KPI catalog Subsequently, the enterprise architect is able to search in the
catalog for suitable EAM KPIs which are related to the selected EAM goals.

Instantiate EAM KPI If no suitable KPI can be found, a new EAM KPI has to be defined.
Otherwise, the architect either accepts suitable KPIs from the catalog, or adapts
partly suitable KPI to his specific needs.

11

2. Foundations

PersistentEntity

TypeDefinition PropertyDefinition Path Principal

Page Document Person Group

Space

Figure 2.5.: UML class diagram [17] showing the basic model hierarchy of Tricia

Configure EAM KPI The last step is the tailoring of the KPIs to the organization-specific
context by the configuration of their organization-specific structure elements.

2.2. Tricia

Tricia is a Java-based enterprise 2.0 wiki system initially developed by the sebis chair of
the Technical University of Munich and now owned by the software company infoAsset1

located in Munich. Its main purpose is a collaborative information management based on a
flexible data model [18]. Moreover, its capabilities allow the employment as a collaborative
EAM tool, as shown by Matthes et al. [9].

2.2.1. Architecture

The architecture of Tricia is based on the Model-View-Controller pattern, i.e., the web ap-
plication’s view (user interface) and its model (data) are basically decoupled and brought
together by a controller component. This pattern ensures the separation of the user inter-
face and the application’s logic on the one hand, and facilitates the reuse of models and
views on the other hand.

Models in Tricia

Tricia uses a flexible persistence layer to store the application’s data, since it is possible
to register an arbitrary database system, which will be used as the data storage for the
whole data of Tricia. Therefore, the model layer, which abstracts the persistence layer, is
independent of the underlying database system.
There is a set of basic models in Tricia, which are extensible by derivation from one of the
existing model classes. The basic model hierarchy is depicted in Figure 2.5, whereas its
parts are:

TypeDefinition & PropertyDefinition TypeDefinitions and PropertyDefinitions allow the
definition of information model’s schema at runtime, hence we call them schema
objects. Each TypeDefinition contains an arbitrary number of PropertyDefinitions

1http://www.infoasset.de

12

http://www.infoasset.de

2.2. Tricia

content

name

tags

type

attributes &
relations

Figure 2.6.: A Tricia page and its basic parts.

and can be assigned to information objects (e.g., pages, documents). Subsection 2.2.2
will cover this topic in detail.

Page & Document Pages are the main information objects in Tricia. As shown in Fig-
ure 2.6, they are consisting at least of a name, tags, an unstructured rich-text con-
tent, as well as of a type, attributes and relations. The attributes and relations of the
page are either defined by the assigned TypeDefinition (by corresponding Property-
Definitions) or free attributes (i.e., arbitrary name-value-pairs attached to the page).
Since pages have both structured (type, attributes, and relations) and unstructured
(rich-text content) data, they are called Hybrid Pages (c.f. Subsection 2.2.2 for more
information).
Documents are very similar to pages, i.e., they are also consisting of the mentioned
properties. However, in contrast to pages, they are directly related to some file up-
loaded to Tricia.

Space Spaces are containers for pages and documents as well as for TypeDefinitions and
PropertyDefinitions, i.e., each information and schema object is part of exactly one
space. Spaces are comparable to Java packages and are defining an own namespace,
i.e., there may be two types with the same name in two different spaces, while all the
types of one space have to have unique names. Moreover, Tricia allows the export
and import of whole spaces and their objects.

Person & Group Since Tricia is a collaborative tool with a multitude of users, an authen-
tication and authorization mechanism is obligatory. Therefore, after a common au-
thentication process (by providing username and password), a user has either read-
only access to certain Tricia objects (if the user is just a reader), or even write access
(if the user is a writer of the object, which of course implies read access).

13

2. Foundations

Controllers and Views in Tricia

Since Tricia is a web application, the MVC controller handles HTTP requests as shown in
Figure 2.7:

1. The web server is responsible for the authentication of users and the creation (if new)
or restoration of sessions

2. Based on the request URL, the web server forwards the request to a certain handler
(controller)

3. A handler checks, if the current user is allowed to perform the requested handlers
action

4. If the user is authorized, the handler loads appropriate models and performs the
associated business logic (e.g., update the model)

5. Subsequently, the handler returns the view, which has to be presented to the request-
ing client. This view can be based on a template defining the layout and design of a
view, while its content is instantiated by the view itself.

Web Browser Web Server Handler

View

Template

Model

01
02

05

08

09

User authentication
Session handling

03 04

06 07

User authorization
Model selection
Business logic

Template selection
View instantiation

Figure 2.7.: Basic processing of a HTTP request to Tricia.

2.2.2. Hybrid wikis

The so-called hybrid wikis are one of the core concepts of Tricia. In this context, the term
hybrid refers to an emergent enrichment of unstructured content (e.g., free text or docu-
ments, c.f. left side of Figure 2.6) with structure (types, attributes, and relations, sc.f. right
side of Figure 2.6).
As already mentioned in the previous Subsection 2.2.1, two of Tricia’s default models are

14

2.3. MxL 1.0

Figure 2.8.: An exemplary TypeDefinition Employee consisting of several
PropertyDefinitions.

the type definition and the property definition. The type definition may consist of several
property definitions, which in turn may define certain integrity rules:

Type If the property definition defines an attribute type, the attribute value of each of the
type definition’s instances has to be of this type, otherwise a warning is displayed
in the instance. Tricia provides a basic set of attribute types, e.g., Text, Number, Date,
Boolean, and Reference (Relation to other instances, optional restricted to instances of
a certain type). For example, the PropertyDefinition Location in Figure 2.8 is of type
Reference, whereas the referred object has to be of type Department.

Multiplicity If the property definition defines a multiplicity, the attribute of each of the
type definition’s instances has to have the number of values as defined by the prop-
erty definition, otherwise a warning is displayed in the instance. The multiplicities
provided by Tricia are Any number, At least one, Exactly one, and Maximal one. For
example, all PropertyDefinitions in Figure 2.8 are defined with multiplicity Exactly
one, so that each instance of type Employee has to provide exactly one value for each
of its attributes.

The relations between the schema objects (type definition and property definition) and the
information objects (page) are depicted in the hybrid wikis data model in Figure 2.9.

2.3. MxL 1.0

Until recently, the EAM KPI structure [12] lacked a formal computation prescription for its
KPIs. Therefore, Monahov et al. [15] designed a DSL capable of defining all the catalog’s
KPIs. While this DSL was named Model-based Expression Language (MxL), its prototyp-
ical implementation in the wiki system Tricia is called Tricia Expression Language (TxL).
Moreover, since this thesis covers further development of MxL, we call the initial version

15

2. Foundations

Space
space

TypeDefinition

AttributeDefinition

Page
type

0..1

1

Attribute

AttributeValue

NumberValue …

space

1

definition

0..1

TypeConstraint

NumberConstraint …

attributes

values

attributeDefinitions

typeConstraint *

*

0..1

*

multiplicity : Multiplicity [0..1]

<<enumeration>>

Multiplicity

Any number
At least one
Exactly one

Maximal one

1

1

* *

1

1

*

*

Figure 2.9.: UML class diagram [17] showing the abstract hybrid wikis data model by
Matthes et al. [19].

designed by Monahov et al. [15] MxL 1.0 (or TxL 1.0), while the version developed through-
out this thesis (especially in Chapter 3) will be named MxL 2.0 (or TxL 2.0).

2.3.1. Fundamentals of MxL 1.0

MxL 1.0 was inspired by both the Object Constraint Language (OCL) [20] and Microsoft’s
Language Integrated Query (LINQ) [21]. However, it was tailored to the EAM domain.
The most important properties of MxL 1.0 are:

Functional programming Functional programming is characterized by the absence of
side effects and furthermore implies some other language features like higher-order
functions and recursion [22, 23]. Higher-order functions are functions, which can
take other functions as arguments. This is especially useful for MxL 1.0’s basic oper-
ators covered later in this subsection.

Object-orientation Since Tricia’s information objects have types, attributes, and relations,
an object-oriented language allows their representation by complex objects, which
allows a convenient access to the information object’s data. However, one of most-
important concepts of object-orientation – namely inheritance – is not supported by
MxL 1.0. Reuse of functionality is achieved by the concept of delegation [22].

16

2.3. MxL 1.0

Sequence-orientation One important purpose of MxL 1.0 is querying the underlying
data model. Hence, MxL 1.0 has to handle whole sequences (ordered multi-sets)
of data objects by applying filters, projections, etc.

Dynamic type system MxL 1.0 is dynamic typed [22, 23], i.e., the type of objects in an
expression are determined at runtime. Technically, the MxL 1.0 interpreter misses a
type checker component, i.e., the MxL 1.0 interpreter consists of a scanner, a parser,
and an evaluation engine.

Dynamic binding If a function is invoked on an object, the evaluation engine looks up
the proper function at runtime [22, 23].

MxL 1.0 was designed to be minimal in the sense of providing just a minimal set of lan-
guage constructs. As a result, MxL 1.0 does not provide constructs for arithmetic op-
erations (addition, subtraction, multiplication, division), string concatenation, or com-
parison operations (equality and inequalities). However, MxL 1.0 supports the condi-
tional, a name-binding-construct, lambda-expressions (anonymous functions), as well as a
comment-construct:

/* c o n d i t i o n a l */
<condit ion> ? <i fbranch> : <elsebranch>

/* l e t−c o n s t r u c t */
l e t <name> = <value> in <scope>

/* lambda */
? (<parameters >) <method−stub>

Name Description

String A character sequence enclosed by quotation marks

Number Both integers and decimals, as well as strings representing a number

Boolean
The language constructs true and false, as well as the strings ”true”, ”false”,
”yes”, and ”no”

Date Stings representing a date

Sequence
A ordered multi-set of data, i.e., the order of elements matters and dupli-
cates are allowed

Map
A fixed collection of key-value-pairs, whereas the notation for the defini-
tion of maps is similar to the JavaScript Object Notation (JSON)

Function
Since MxL 1.0 is a functional language, functions are first-class objects [22]
of type Function

Entity Each object of the underlying information model is of this type

Table 2.1.: Basic types of MxL 1.0

17

2. Foundations

Custom MxL Function

STATIC::applicationContinuityPlanAvailabilityKPI

Type

Name getApplicationContinuityPlanAvailabilityKPI

Parameters

Description A measure of how completely IT continuity plans for business critical applications have been

drawn & tested up for the IT‘s application portfolio

Method Stub // Determine all critical business applications

let criticalApplications =

 find(“Business Application”,”is critical”,”yes”) in

// Determine all critical business applications

// with tested IT continuity plan

let criticalApplicationsWithCoveringContinuityPlan =

 criticalApplications.where(?(ca)(ca.hasTestedContinuityPlan())) in

// Calculate proportion of critical business applications

criticalApplicationsWithCoveringContinuityPlan.count()

 .div(criticalApplications.count())

Figure 2.10.: The implementation of the EAM KPI depicted in Figure 2.1 as a MxL 1.0 cus-
tom function [15].

Since MxL 2.0 will provide similar constructs, Subsection 3.1.2 will cover this topic in more
detail.
Furthermore, in addition to the types defined in the underlying information model, MxL
1.0 also provides a set of basic types, which is listed in Table 2.1. Since handling and pro-
cessing sequences is one of the main purposes of MxL 1.0, the language provides a set
of basic functions to filter, sort, group, or to apply other query operators onto a arbitrary
sequence of objects. The set of functions provided by MxL 1.0 is based on Microsoft’s
Standard Query Operators [24] and contains ,i.a., common query functions (e.g., where, se-
lect), aggregation functions (e.g., count, sum), and set functions (e.g., concat, intersect). These
functions are also subject in Subsection 3.1.4, where they will be explained in further detail.

2.3.2. Use cases of MxL 1.0

While the motivation for the design of MxL 1.0 was the formal definition of EAM KPIs, its
implementation in Tricia enables many use cases:

Custom functions In order to reuse MxL expressions, users can create so-called custom
functions, e.g., for each of the catalog’s KPIs a custom function was created formally
defining the KPI’s computation (c.f. Figure 2.10). Therefore, to evaluate the KPI, the
user just has to invoke the corresponding custom function.

Derived attributes While the values of common attributes are persisted in Tricia’s database,
the values of derived attributes are computed according to a MxL 1.0 expression.

18

2.4. Shortcomings of existing foundations

Therefore, derived attributes are able to make dependencies between information
model elements explicit by defining the dependency a proper MxL 1.0 expression.

Embedded expressions MxL 1.0 expressions can be embedded in the rich-text content
of a page, which enables the dynamic generation of HTML-based visualizations, e.g.,
based on a certain condition, the MxL 1.0 expression returns an HTML image show-
ing either a green, yellow, or red traffic light.

In addition to the evaluation of MxL 1.0 by the implementation of all the catalog’s KPIs,
this language and its prototypical implementation were also deployed in an EU project
called SmartNet Navigator [25, 26], whereas the main purpose of MxL 1.0 in this project was
the dynamic generation of a visualization of a project status. This shows the applicability
of MxL 1.0 in areas outside of EAM.

2.4. Shortcomings of existing foundations

As stated in Section 1.3, the goal of the thesis is the prototypical implementation of the Liv-
ing KPIs – an integrated and flexible EAM platform based on the EAM KPI structure. The
Living KPIs prototype will be based on Tricia as well as MxL 1.0, since these technologies
already provide a set of useful features.
For example, since Tricia implements the Hybrid Wikis concept (c.f. Subsection 2.2.2), it
supports the collaborative creation of a data model, i.e., a multitude of users is capable of
contributing to the emergence of the data model. Furthermore, Tricia implements the MxL
1.0 prototype, wherefore there is already the possibility to formally define and automati-
cally evaluate the EAM KPIs.
However, there are still some shortcomings regarding the implementation of the Living
KPIs prototype.

2.4.1. No compile-time analysis of MxL expressions

The Living KPIs have to be easily adaptable to an organization-specific context, i.e., it
should be possible to delete or rename certain information model elements without violat-
ing the integrity of the model.
However, since the formal definitions of the KPIs represented by MxL 1.0 expressions re-
fer to these model elements (like the custom function in Figure 2.10, which refers to a type
with name ”Business Application” and an attribute with name ”is critical”), deleting or re-
naming model elements would make these expressions invalid. Moreover, since MxL 1.0 is
dynamically typed and uses dynamic dispatching (as mentioned in Subsection 2.3.1), the
system would not even recognize the expression’s invalidity until a re-evaluation leads to
a runtime exception.
Chapter 3 tackles this problem by developing MxL 2.0, the successor of MxL 1.0. In con-
trast to MxL 1.0, the 2.0 version will be type safe, which enables further analysis of the
expression, e.g., which information model elements the expression refers to. This analysis
allows to determine all expressions referring to a certain information model element and
to handle the model element’s deletion or renaming in a proper way.

19

2. Foundations

2.4.2. Tight coupling between MxL 1.0 and Tricia

While the Living Catalog is prototypically implemented in Tricia, there are many other
possible use cases requiring a DSL capable of defining queries onto an information model
and performing calculations on the obtained results (e.g., the mentioned EU project Smart-
Net Navigator [25, 26]). However, these use cases may require an implementation in other
tools than Tricia, which – because of the tight coupling between MxL 1.0 and Tricia – rules
out the usage of MxL.
Therefore, MxL 2.0 is decoupled from Tricia and is available as a separate Java archive
(mxl.jar). Hence, MxL 2.0 is easily integratable in other tools by the implementation of
one of MxL 2.0’s components (MxL Connector, c.f. Subsection 3.2.3), which manages the
interaction between the language and the implementing tool.
As a consequence, Sections 3.1 and 3.2 are completely independent from MxL 2.0’s imple-
mentation in a tool, while just Section 3.3 focuses on its implementation in Tricia.

2.4.3. Missing type-based template engine in Tricia

In order to facilitate the familiarization into the EAM platform – especially for people al-
ready familiar with the EAM KPI structure or the catalog – the layout and design of the
Living KPIs has to be based onto the EAM KPI structure as defined by Matthes et al. [12].
Hence each page representing one of the catalog’s KPIs has to look like the KPI description
in Figure 2.1.
However, while the Hybrid concept of Tricia (c.f. 2.2.2) allows the definition of integrity
rules for a type, so that each of the type’s instances will be checked according to these
rules, it is not possible to influence the appearance a certain type’s instances. This leads to
the following problems:

• If the EAM KPI structure changes (e.g., by adding or removing a structure element,
reordering of structure elements, ...), each page representing a KPI has to be updated.

• If the Living KPIs have to be extended by a new KPI, the creator of the KPIs has to
take care of the page’s layout.

• Managing structure elements both as attributes of the page (to allow structured ac-
cess) and parts of rich-text content (to provide a familiar layout) yields to redundan-
cies.

Section 4.1 covers the solution for this problem, which is a light-weight and type-based
template engine. This allows the definition of a template for each type definition, whereas
this template is applied onto each of the type’s instances.

2.4.4. Insufficient deployment support in Tricia

The idea of the EAM KPI Catalog is to provide practice proven KPIs, which are adaptable
to and employable in their organization-specific environment. The Living KPIs environ-
ment’s goal is to take this idea to another level by the provision of an integrated and flexible
EAM platform implementing all KPIs from the EAM KPI Catalog. Therefore, the Living

20

2.4. Shortcomings of existing foundations

KPIs environment has to provide the EAM KPI structure’s elements, all the EAM KPI Cat-
alog’s KPIs, as well as its whole integrated information model.
However, Tricia does not support an intuitive and descriptive definition of initial data
sets. Since a hard-coded approach (definition of the structure, EAM KPIs, and integrated
information model in Java code) is rather inflexible and unintuitive, Section 4.2 covers the
implementation of a descriptive approach for the definition of initial data sets in Tricia as
well as the finalization of a prototype of the Living KPIs.

21

2. Foundations

22

Part II.

Contribution of the Thesis

23

3. MxL 2.0

With the development of MxL 1.0 by Monahov et al. [15], there is already a language capa-
ble of formally defining the KPIs of the EAM KPI Catalog. However, since MxL 1.0 uses a
dynamic type system as well as a dynamic dispatching mechanism, an analysis of a MxL
1.0 expression at compile time is not possible.
However, as stated in Subsection 2.4.1, a compile-time analysis is inevitable for the imple-
mentation of the Living Catalog. Therefore, this chapter covers the design and implemen-
tation of an advanced MxL version, namely MxL 2.0. Doing this, Section 3.1 will explain
the basics of MxL 2.0, Section 3.2 will focus on its technical aspects. While these two chap-
ters about MxL 2.0 are rather independent from implementation aspects, Section 3.3 goes
into more detail on TxL 2.0, the implementation of MxL 2.0 in Tricia.

3.1. Fundamentals of MxL 2.0

While the type checker is certainly the main feature added to MxL 2.0 (c.f. Section 3.2),
there are many other changes and improvements in MxL 2.0 compared to its predecessor.

3.1.1. MxL 2.0 types

While MxL 1.0 does not support inheritance, MxL 2.0 uses this fundamental concept of the
object-orientation paradigm in order to reuse functionality. However, the type hierarchy of
the basic types is rather simple, since each of them derives from type Object (except Object
itself). All basic types of MxL 2.0 are listed in Table 3.1.
This set of basic types may be extended by a specific implementation of MxL 2.0, e.g., TxL
2.0 adds the types Page, Document, Principal, Person, and Group (based on Tricia’s models,
cf Subsection 2.2.1), whereas each of them derives (directly or indirectly) from type Entity.
The resulting type hierarchy of TxL 2.0 is depicted in Figure 3.1.

3.1.2. Basic language constructs

While MxL 1.0 desired simplicity in the sense of a minimal set of language constructs, MxL
2.0 focuses a clear syntax by providing common constructs.

Comments

To explain certain parts of an arbitrary MxL 2.0 expression, they can be annotated with
textual comments by the following construct:

/* This i s a simple t e x t u a l comment */

25

3. MxL 2.0

Name Description

Object
Each element of MxL’s underlying information model is of type Ob-
ject

String
Each character sequence encapsulated in quotation marks is a value
of type String, e.g., ”hello world”

Number Represents both integers and decimals, e.g., 123.456

Boolean true and false, but also language specific string like ”yes” and ”no”

Date

A date consisting of day, month,and year. Can be constructed by
the date-function and the date’s string representation. The current
date can be determined by the global identifier Today. The compo-
nents of a date are accessible via day (e.g., Today.day), month (e.g.,
Today.month), and year (e.g., Today.year)

Map
A fixed collection of key-value-pairs. The notation is similar to
the JavaScript Object Notation (JSON), e.g., {number: 1, title: ”hello
world”}

Entity
An entity is a complex object, i.e., an object with attributes and/or
relations to other other entities

Sequence

An ordered multi-set of values, written as [element1, element2, ...].
An ordered multi-set is a collection, whose order matters and which
allows duplicates. The type Sequence can be parametrized to de-
termine the type of the sequence’s elements, e.g., the type Se-
quence<Number> defines a sequence of numbers. The elements of
a sequence are accessible via [] and the element’s index, whereas
the index is zero-based.

Function

Because MxL 2.0 allows higher-order functions, there are objects of
type Function. Again, this type can be parametrized to determine
the function’s signature (parameter types and return type), e.g., the
type Function<Number, Number, Boolean> defines a function with
two parameters of type Number returning an object of type Boolean.
Moreover, parameter types can be defined as optional by a question
mark (the function can be invoked without optional parameters),
e.g., Function<Number, Number?, Boolean> can be invoked for either
one or two parameters.

Type
A meta-type representing types, e.g., the types Number and String
are also objects of type Type

Space
Represents a workspace/package consisting of types, static func-
tions, and instances (comparable to Java packages)

Table 3.1.: Basic types of MxL 2.0, whereas each of them derives from type Object (except
Object itself

26

3.1. Fundamentals of MxL 2.0

Object

String Number Boolean Map Date

Entity Sequence Function Type Space

Page Document Principal

Person Group

Figure 3.1.: UML class diagram [17] showing the type hierarchy of MxL 2.0 extended by
TxL 2.0’s basic types Page, Document, Principal, Person, and Group.

Arithmetic operators

MxL 2.0 provides constructs for the arithmetic addition, subtraction, multiplication, divi-
sion, and exponentiation:

1 . 0 + 2 . 0 /* Addition */
3 − 0 . 1 /* S u bt r a c t i o n */
3 . 1 4 * (2 * 3) /* M u l t i p l i c a t i o n */
1 . 0 / 0 /* Division , denominator = 0 y i e l d s to an except ion */
2 ˆ 8 /* Exponentiat ion */

Of course, the parser takes care of the common operator precedence [22], e.g., 1 + 2 * 3 will
be evaluated as 1 + (2 * 3).
If the first operand of the plus operator is not a number, but a string, the string concatena-
tion is applied, e.g., ”Hello ” + ”World” will be evaluated to ”Hello World”.
Furthermore, the minus operator can also be applied onto two objects of type Date to calcu-
late the difference between them in terms of days, e.g., Today - date(”15.03.2013”) retrieves
the number of days passed since 15th March 2013.

Comparison and logical operators

In order to compare certain instances, MxL 2.0 provides also a basic set of common com-
parison operators, namely the equality (=) and the inequalities (<>, >, >=, <=, <). These
operators can be applied on both numbers and dates.
Furthermore, to combine multiple comparisons, MxL 2.0 provides the logical inversion
(not), conjunction (and), and disjunction (or), whereas inversion will be evaluated before
the conjunction, which in turn will be evaluated before the disjunction. Hence, the expres-
sion

1 > 1 or 5 <> 3 + 2 . 1 and not f a l s e

27

3. MxL 2.0

will be evaluated as

(1 > 1) or ((5 <> (3 + 2 . 1)) and (not f a l s e))

Conditional

The conditional construct consists of three expressions (condition as well as if-branch and
else-branch), whereas the construct evaluates either the if-branch (if the condition evalu-
ates to true or the else-branch (if the condition evaluates to false). The result of the condi-
tional construct is the result of the evaluated branch.
Compared to MxL 1.0, the conditional’s syntax has changed from a ternary operator (<con-
dition>? <ifbranch>: <elsebranch>) to a traditional if-then-else-statement:

i f <condit ion>
then <i fbranch>
e l s e <elsebranch>

Name-value binding

To simplify certain expressions, it may be beneficial to bind a certain value to a certain
name, whereas this name can be used in the remaining expression.
The syntax of this construct is the same as in MxL 1.0, i.e.:

l e t <name> = <value> in
<scope>

The MxL 2.0 interpreter evaluates the value and make it accessible in the scope via the
given name.

Lambda expressions

A lambda-expression is an anonymous function-expression.
MxL 2.0 introduces a new syntax for lambda expressions, which is based on the syntax of
the C# version of Microsoft’s LINQ[21]:

/* syntax */
(<paramname1>:<paramtype1> , <paramname2>:<paramtype2> , < . . . >)

=> <methodstub>

/* example */
l e t addi t ion = (a : Number , b : Number) => a + b in
addi t ion (2 , 3)

The parameters of the function are defined before the arrow as name-type-pairs, whereas
the method stub, which may access the parameters by their identifiers, is defined after-
wards. If there is only one parameter, the brackets around the parameter can be omitted:

28

3.1. Fundamentals of MxL 2.0

/* syntax */
<paramname>:<paramtype> => <methodstub>

/* example */
l e t inc = a : Number => a + 1 in
inc (1)

A function without parameters is defined by empty brackets:

/* syntax */
() => <methodstub>

/* example */
l e t one = () => inc (0) in
one ()

Furthermore, if the parameter types can be inferred by the environment, they can be omit-
ted (as shown in Subsection 3.1.4).

Type Checking and Type Casting

The implementation of a type checker in MxL 2.0 also implies the need for constructs for
checking an object’s type as well as for casting an object to a certain type.
The binary type checking operator (<object>is <type>) checks at runtime if the given object
is of the given type and returns either true or false, e.g.:

” Hello World” i s S t r i n g /* true */
” Hello World” i s Object /* t rue */
” Hello World” i s Number /* f a l s e */

[1 , 2 , 3] i s Sequence /* t rue */
[1 , 2 , 3] i s Sequence<Number> /* true */
[1 , 2 , 3] i s Sequence<Str ing> /* f a l s e */

The binary type casting operator (<object>as <type>) tries to cast the given object to the
given type. If this is not possible, this construct would throw an exception. This construct
is especially useful for map-values, since the Map type does not provide parametrization
(to determine the types of the map’s attributes) and each of the map’s value is of type
Object, e.g:

” Hello World” as S t r i n g /* OK */
{ t e x t : ” Hello World” , number : 4 . 0 } . t e x t as S t r i n g /* OK */
{ t e x t : ” Hello World” , number : 4 . 0 } . t e x t as Number /* Exception */

3.1.3. Higher-order functions in MxL 2.0

As described later on in Subsection 3.1.4, higher-order functions in MxL 2.0 are an impor-
tant tool for the definition of queries against an information model, since they provide a
flexible mechanism to define custom predicates or other functions as parameters to the

29

3. MxL 2.0

query operators.
Higher-order functions are functions, which can take functions as parameters, e.g., a func-
tion applyFunc of type Function<Function<Date, Number>, Date, Number> is a higher-order
function expecting a function and a date as parameter and returning a number. An exem-
plary application of the applyFunc-function could look like follows:

l e t getDay = (d : Date) => d . day in
applyFunc (getDay , Today)

Another possibility is to pass the lambda expression directly as parameter to the applyFunc-
function:

applyFunc ((d : Date) => d . day , Today)

However, since the type of the lambda expression can be inferred by the expected parame-
ter type of the applyFunc-function, which is Function<Date, Number>, the parameter types
of the lambda expression can be omitted:

applyFunc (d => d . day , Today)

Implicit lambdas

The previous expression can be even further shortened by the use of so-called ”implicit
lambdas”:

applyFunc (day , Today)

Since the applyFunc-function expects a function of type Function<Date, Number> as its first
parameter, but realizes that day is neither a function nor a known identifier, it will try
to interpret this parameter as the method stub of a lambda, whereas the identifier day
– since not a known global identifier – will be implicitly evaluated as a member of an
implicit lambda parameter. Because the application of an implicit lambda yields to a valid
expression, the type checker will implicitly interpret the expression applyFunc(day,Today)
as

applyFunc(< i m p l i c i t param> => < i m p l i c i t param>.day , Today)

However, since there can be just one implicit lambda parameter, implicit lambdas just
work for higher-order functions expecting either a one-dimensional function (functions
with one parameter) or functions without parameters (which obviously do not have an
implicit parameter).
The advantage of implicit lambdas is a very intuitive spelling of certain higher-order func-
tions (c.f. Subsection 3.1.4), which for example is comparable to clauses of the well-known
Structured Query Language (SQL).

3.1.4. Sequence functions

One of MxL’s main purposes is the definition of queries against an information model [15].
Therefore, based on the sequence of objects of a specific type, MxL has to be able to apply
certain filters, projections, aggregation, etc. onto this sequence. For this purpose, MxL
2.0 provides an extensive set of sequence functions based on Microsoft’s Standard Query

30

3.1. Fundamentals of MxL 2.0

Operators [24] and the evaluation of MxL 1.0 by Monahov et al. [15]. All sequence functions
provided by MxL 2.0 are listed in Tables 3.2, 3.3, 3.4, 3.5, 3.6, and 3.7.

Name Parameters & Return type Description

select
map : Function<T, V>
returns : Sequence<V>

Applies the map-function to
each element of the source se-
quence and returns a sequence
containing the results of each in-
dividual application

selectMany
map : Function<T, Sequence<V>>
returns : Sequence<V>

Similar to the select-function,
however, in selectMany, the
map-function returns a se-
quence for each element.
The concatenation of all se-
quences forms the result of the
selectMany-function.

where
pred : Function<T, Boolean>
returns : Sequence<T>

Filters the source sequence by
the given predicate, i.e., all ele-
ments fulfilling the predicate re-
main in the sequence.

groupby
keySel : Function<T, Object>
f : Function<Sequence<T>, Object>?
returns : Map

Groups the elements of the
source list by the keySel-
Function and applies the
(optional) f-function on the
elements of each single group

orderby
keySel : Function<T, Object>?
descending : Boolean?
returns : Sequence<T>

Sorts the source sequence by
the (optional) keySel-function,
whereas a natural order will be
applied. The (optional) descend-
ing parameter determines, if the
elements should be ordered as-
cending or descending.

Table 3.2.: MxL 2.0’s common query functions. In this table, all functions are applied on
Sequences of type Sequence<T>, whereas T and V are arbitrary MxL 2.0 types.

31

3. MxL 2.0

Name Parameters & Return type Description

any pred : Function<T, Boolean>
returns : Boolean

Returns true, if at least one element of
the source sequence fulfills the given
predicate, otherwise false

all pred : Function<T, Boolean>
returns : Boolean

Returns true, if each element of the
source sequence fulfills the given
predicate, otherwise false

none pred : Function<T, Boolean>
returns : Boolean

Returns true, if no element of the
source sequence fulfills the given
predicate, otherwise false

contains element : T
returns : Boolean

Returns true, if the given element is
contained in the source sequence, oth-
erwise false

isEmpty returns : Boolean
Returns true, if the source sequence
has no elements, otherwise false

isNotEmpty returns : Boolean
Returns true, if the source sequence
has at least one element, otherwise
false

Table 3.3.: MxL 2.0’s quantifier functions returning a boolean value. In this table, all func-
tions are applied on Sequences of type Sequence<T>, whereas T is an arbitrary MxL 2.0
type.

Name Parameters & Return type Description

distinct returns : Sequence<T> Removes all duplicates of the source
sequence

except
other : Sequence<T>
returns : Sequence<T>

Returns a sequence with all elements
contained in the source sequence, but
not in the other one

intersect
other : Sequence<T>
returns : Sequence<T>

Returns a sequence with all elements
contained in the source sequence and
in the other one

concat
other : Sequence<T>
returns : Sequence<T>

Concatenates the source sequence
with the other one, i.e., the resulting
sequence contains all elements of the
source sequence, followed by all ele-
ments of the other one

Table 3.4.: MxL 2.0’s set functions produce a sequence based on the presence or absence of
an equivalent element within the same or another sequence. In this table, all functions are
applied on Sequences of type Sequence<T>, whereas T is an arbitrary MxL 2.0 type.

32

3.1. Fundamentals of MxL 2.0

Name Parameters & Return type Description

first pred : Function<T, Boolean>?
returns : T

Returns the first element of the source
sequence (or the first element satisfy-
ing the predicate). If there is not such
an element, this function throws an ex-
ception

last pred : Function<T, Boolean>?
returns : T

Returns the last element of the source
sequence (or the last element satisfy-
ing the predicate). If there is not such
an element, this function throws an ex-
ception

single pred : Function<T, Boolean>?
returns : T

Returns the only element of the source
sequence (or the only element satisfy-
ing the predicate). If there is not such
an element, or if there is more than one
element, this function throws an ex-
ception

Table 3.5.: MxL 2.0’s element functions choosing a certain element of the source sequence.
In this table, all functions are applied on Sequences of type Sequence<T>, whereas T is an
arbitrary MxL 2.0 type.

Name Parameters & Return type Description

rest returns : Sequence<T> Returns the source sequence without
the first element

take
n : Number
returns : Sequence<T>

Returns a sequence with the first n el-
ements of the source sequence

takeWhile
pred : Function<T, Boolean>
returns : Sequence<T>

Returns all elements of the source se-
quence until an element does not sat-
isfy the predicate

skip
n : Number
returns : Sequence<T>

Returns a sequence without the first n
elements of the source sequence

skipWhile
pred : Function<T, Boolean>
returns : Sequence<T>

Skips all elements of the source se-
quence as long as these elements sat-
isfy the predicate, and returns the rest

Table 3.6.: MxL 2.0’s partitioning functions dividing the source sequence into two sections
and return one of them. In this table, all functions are applied on Sequences of type Se-
quence<T>, whereas T is an arbitrary MxL 2.0 type.

33

3. MxL 2.0

Name Parameters & Return type Description

count pred : Function<T, Boolean>?
returns : Number

Counts all elements of the source se-
quence (or counts the elements satis-
fying the predicate)

ratio pred : Function<T, Boolean>
returns : Number

Returns a number between 0 and 1
representing the ratio of elements ful-
filling the given predicate

sum map : Function<T, Number>?
returns : Number

Sums up all numbers of the source se-
quence. The optional map-function
may select a numerical member of
each element

average map : Function<T, Number>?
returns : Number

Computes the average of all numbers
of the source sequence. The optional
map-function may select a numerical
member of each element

max map : Function<T, Object>?
returns : T

Determines the maximal element of
the source sequence. The optional
map-function may select a criterion
used for the selection of the maximum

min map : Function<T, Object>?
returns : T

Determines the minimal element of
the source sequence. The optional
map-function may select a criterion
used for the selection of the minimum

aggregate
func : Function<V, T, V>
seed : V
returns : V

This is a fold-operator aggregating the
current sequence to a single value by
the given func-function. The func-
function is invoked for the result of
its previous invocation and each of the
source sequence’s elements. For the
first iteration of the func-function the
seed value is used. The result of the
last invocation of the func-function is
the result of the aggregate-function.

Table 3.7.: MxL 2.0’s aggregation functions folding up all elements of the source sequence
to a single value. In this table, all functions are applied on Sequences of type Sequence<T>,
whereas T and V are arbitrary MxL 2.0 types.

34

3.1. Fundamentals of MxL 2.0

Basic Types

Basic Functions

Custom Functions

Custom Type

Derived Attributes

Attributes

Custom Functions

MxL Core Package Custom Package

Static Custom Functions

Static Global Basic Functions

MxL Environment
1

*

*

*

*

*

*

*

*

*

* Static Global Custom Functions *

Global Identifiers *

Basic Functions *

Static Basic Functions
*

1 1

1 1

1 1

Figure 3.2.: The MxL 2.0 asset hierarchy.

3.1.5. MxL Asset Hierarchy

MxL assets are elements of the MxL environment (e.g., implementing system), which are
referable by identifiers in MxL expressions, i.e., these assets are usable in the definition of
MxL expressions.
While previous subsections in this chapter already introduced some basic assets of MxL 2.0
(e.g., basic types and sequence functions), there are still some more assets in MxL 2.0. All
assets as well as their relations are depicted in the MxL 2.0 asset hierarchy in Figure 3.2.
The root of the hierarchy is the MxL Environment, which is the system the language is
implemented in. Hence, TxL 2.0’s environment is Tricia.
The only direct components of the MxL Environment are its packages, whereas there is
exactly one MxL Core Package and an arbitrary number of additional custom packages.
All basic assets of MxL 2.0 are encapsulated in the MxL Core Package. This includes the
basic types mentioned in Subsection 3.1.1 as well as the sequence functions described in
Subsection 3.1.4, which are part of the basic type Sequence.
In general, MxL 2.0 supports two types of functions:

Basic functions These functions are defined in the implementation language of MxL 2.0
– Java. Hence, basic functions are compiled and are not definable at runtime (c.f.

35

3. MxL 2.0

Subsection 3.2.5). However, they allow to extend MxL 2.0’s expressiveness by exe-
cuting arbitrary Java code.

Custom functions Custom functions are defined in MxL 2.0. Hence, these functions can
be defined at runtime, which enables reusability of expressions. Of course, custom
functions can call other custom (and basic) functions enabling compositions of func-
tions.

Both basic functions as well as custom functions can be defined for a certain owner type
(e.g., the owner type of the sequence functions is Sequence) allowing the application of the
function onto an object of its owner type. Obviously, all functions defined for basic types
are also part of the MxL Core package.
An example for a custom function with an owner type would be the function getCentury
implemented for type Date, expecting no parameters, and implemented as follows:

(t h i s . year − 1) / 100 + 1

An exemplary invocation of the getCentury-function would be the following:

Today . getCentury () /* re turns the current century */

Since this custom function has an owner type, the object, on which the function will be
applied, is accessible via the this-keyword (whose type is obviously the function’s owner
type). However, MxL 2.0 also supports an ”implicit this”, i.e., if the type checker finds an
unknown identifier, it will check if the identifier is a member of the object represented by
this. Therefore, the following implementation of the getCentury-function would be equiv-
alent to the previous one:

(year − 1) / 100 + 1

Both the ”implicit this”-feature and the ”implicit lambda”-mechanism (c.f. Subsection 3.1.3)
equip MxL 2.0 with some kind of intelligence by providing ”semantic sugar” and facilitat-
ing – at least in some cases – a shortened and hence clearer syntax.
Functions without an owner type are called static, e.g., the function date parsing the string
representation of a date to an object of type Date. Hence, when implementing a static func-
tion, the this-object is null. Static functions belonging to the MxL Core Package are also
called global.
The last remaining assets of the MxL Core Package are the global identifiers representing
globally available name-value-bindings. For example, the identifier Today, which was al-
ready used in previous examples, is a global identifier returning the current date.
Depending on the system MxL 2.0 is implemented in, there may be additional custom
packages, which may have custom types. In TxL 2.0, MxL 2.0’s implementation in Tricia,
this is the case, whereas Tricia call the packages spaces and the custom types type definition
(as introduced in Subsection 2.2.1). In contrast to basic types, custom types may have at-
tributes (also representing relations) as well as derived attributes (in addition to custom
functions). While the values of attributes are persisted in Tricia’s database, the values of
derived attributes are computed based on a MxL expression. For example, a custom type
Employee may contain two attributes Salary and Hours as well as a derived attribute Costs,
which is specified as the product of Salary and Hours, whereas the definition of a proper
derived attribute might look like follows:

36

3.1. Fundamentals of MxL 2.0

t h i s . Sa lary * t h i s . Hours

In the definition of derived attributes, the this refers to the instance the derived attribute is
evaluated for. The use of the previously mentioned ”implicit this” allows a shortening of
this expression to the following:

Sa lary * Hours

Custom packages as well as custom types and their attributes and derived attributes share
a common characteristic: Their names may contain special characters, e.g., the type Em-
ployee may have an attribute Work hours instead of Hours. However, in a MxL expression,
special characters may yield to problems, e.g., the identifier of the Work hours attribute
would be interpreted as two successive identifiers (Work and hours). Therefore, MxL 2.0
supports the enclosure of identifiers with single quotes, i.e., a valid definition of the de-
rived attribute Costs referring to the Work hours attribute might look like follows (again, by
using an ”implicit this”):

Sa lary * ’Work hours ’

Hence, each identifier referring to a custom package, custom type, attribute, or derived
attribute, which contains a special character, has to be enclosed with single quotes.
Last but not least, custom packages may also contain static functions. However, they do
not differ from static global functions, apart from the fact that they are assigned to a custom
package.

3.1.6. Querying the information model

One of MxL’s main purposes is the definition of queries against an underlying informa-
tion model. The starting point of an query against the information model is very often
a sequence of all instances of a certain type, e.g., all instances of type Employee. Hence,
MxL 2.0 supports the find construct, expecting an arbitrary custom type T as parameter
and returning a sequence of type Sequence<T>:

f ind (<any custom type>)

Employee

Member

Salary : Number

Hours : Number

Costs : Number

Project

Employee Costs : Number

1..*

Name : String

Name : String
Department

Name : String

Location

1 * *

Figure 3.3.: An exemplary UML class diagram [17] consisting of three classes.

Assuming the information model in Figure 3.3, the retrieval of all employees would look
like follows:

f ind (Employee)

37

3. MxL 2.0

Based on this sequence, the sequence functions of Subsection 3.1.4 can be used to define
certain queries, e.g., the following query would retrieve all employees whose salary is
greater than 20:

f ind (Employee)
. where (e => e . Sa lary > 20)

By applying the previously mentioned ”implicit lambda”, this query can be expressed like
follows:

f ind (Employee)
. where (Sa lary > 20)

MxL 2.0 supports the navigation through an information model by using the relations
between the types. For example, the following query determines the count of employees
working in each project:

f ind (Employee)
. s e l e c t (e =>
{

ProjectName : e .Name
DepartmentCount : e . Member . count ()

})

Again, this expression can be shortened by the use of an ”implicit lambda”:

f ind (Employee)
. s e l e c t (
{

ProjectName : Name
DepartmentCount : Member . count ()

})

To navigate reversely through the information model, MxL 2.0 supports the get-whereis
construct:

get <r e l a t e d custom type> whereis <reverse r e l a t i o n >

For example, the get-whereis construct can be used to determine all employees of a certain
department, whereas the relation Location is used in reverse direction. The following query
determines all departments, in which there is at least one employee with a salary greater
than 20:

f ind (Department)
. s e l e c t (d =>

d . get Employee whereis Locat ion . any (e => e . Sa lary > 2 0))

By the ”implicit lambda”, this query can be shortened to the following:

f ind (Department)
. s e l e c t (

get Employee whereis Locat ion . any (Sa lary > 2 0))

38

3.2. Interpretation

3.2. Interpretation

While Section 3.1 discovered MxL 2.0 from the user’s perspective, this section will cover
rather technical aspects, namely the interpretation and evaluation of MxL 2.0 expressions.
Figure 3.4 depicts the process of interpreting and evaluating a MxL 2.0 expression.

MxL Scanner

MxL expression as string

• Lexical analysis
• Tokenization

MxL Parser

Tokens

• Syntactic analysis
• Generation of abstract

syntax tree (AST)

MxL Type Checker Schema
• Semantic analysis
• Linking to information

model elements

AST

Evaluation engine Instances
• Querying information

model
• Execution

Typed expression tree

Evaluated value

M
xL

 C
o

n
n

e
ct

o
r

MxL 2.0 Underlying information
model (e.g., Tricia)

Figure 3.4.: The process of interpreting and evaluating a MxL 2.0 expression. This also
shows the interaction between MxL 2.0 and the underlying information model
via the MxL Connector.

3.2.1. Scanner & Parser

Apart from some syntax changes (c.f. Subsection 3.1.2), both the MxL 2.0 scanner and the
MxL 2.0 parser have not changed that much in comparison to MxL 1.0.
The scanner’s input basically is a MxL expression as a stream of characters. A declara-
tive specification of MxL 2.0’s lexical grammar defines how to bundle these characters to

39

3. MxL 2.0

proper tokens, e.g., bundling multiple digits to one number, or bundling multiple charac-
ters to one identifier. To create the MxL 2.0 scanner, the free Java-based lexical analyzer
generator JFlex [27] was used.
These tokens generated by the scanner are the input for the parser, which creates an ab-
stract syntax tree (AST). Similar to the scanner, the MxL 2.0 parser was also generated
based on a declarative specification of MxL 2.0’s syntax in Extended Backus-Naur Form
(EBNF) [28] by the use of the open source LALR [29] parser generator Beaver [30].
Figure 3.5 shows a MxL 2.0 expression and its processing by the MxL 2.0 scanner and
parser.

MxL Scanner MxL Parser

(this.year – 1) / 100 + 1 (this . year - 1) / 100 + 1

Addition

Number Division

1

Number

100

Bracket

+ /

Subtraction

) (

ElementSelector Number

- 1

This Identifier

. this year

Figure 3.5.: Scanning and parsing of an exemplary MxL 2.0 expression.

3.2.2. AST & Expression objects

The MxL 2.0 AST is implemented as an evaluable expression object containing proper sub-
expressions. For example, the addition expression object in Figure 3.5 is the root of the
AST and contains a sub-expression for the left operator (a division expression), and a sub-
expression for the right operator (a number).
The base of all of MxL 2.0’s expression classes is the abstract Expression (c.f. Figure 3.6),
whereas its most important methods are the following, whereas most of them are abstract
and implemented in concrete subclasses:

evaluate This method executes the expression, and evaluates its sub-expression, e.g., the
DivisionExpression will evaluate its sub-expressions for the left and right operand,
and subsequently divides the first value through the second one.
The evaluation is done by the evaluation engine described in Subsection 3.2.5.

checkType This method checks the type of the expression and all its sub-expressions
and returns the determined return type (the supposed type of value returned by
the evaluate-method), e.g., the DivisionExpression will check if the types of its two
sub-expressions are numbers and subsequently returns also the type Number.
The type checking is done by the type checker described in Subsection 3.2.4.

40

3.2. Interpretation

toJSON To store a type checked expression, an expression object can be serialized to a
JSON object. While a serialization of an expression object’s original string represen-
tation as inputted to the scanner would also imaginable, an internal representation
as JSON object allows the retention of the mapping from the expression’s identifiers
to the information model’s objects determined by the type checking process (c.f. Sub-
section 3.2.4).

getMxLReferenceProfile After a successfully type checking, this method returns a refer-
ence profile containing all the MxL assets referenced in the expression and its sub-
expressions, e.g., all types, attributes, and functions used in the expression.

Expression

AdditionExpression

DivisionExpression

BinaryOperatorExpression

BracketExpression ElementSelectorExpression

ThisExpression NumberExpression

BinaryNumberOperatorExpression SubtractionExpression

IdentifierExpression

Figure 3.6.: An excerpt of MxL 2.0’s expression types containing all the types of the exam-
ple in Figure 3.5. Since the plus-symbol is both the arithmetic addition and the
string concatenation, and the minus-symbol is both the arithmetic subtraction
and the date difference operation, the AdditionExpression and SubtractionExpres-
sion classes are not subtypes of the BinaryNumberOperatorExpression

In addition to these methods, the Expression class also contains two important static func-
tions:

fromJSON This static function generates an expression object by its internal JSON repre-
sentation

parse This static function generates an expression object by the expression’s string repre-
sentation, i.e., the string is processed by the MxL 2.0 scanner as well as the MxL 2.0
parser as described in Subsection 3.2.1.

Since MxL 1.0 missed a type checker, all these methods except evaluate – although even
this one has changed a lot – are new in MxL 2.0, whereas they will be explained in more
detail in the following Subsections.

41

3. MxL 2.0

3.2.3. MxL Connector

While scanner and parser are rather autonomous components, both the type checker and
the evaluation engine have to interact with the underlying information model. However,
since MxL 2.0’s information model strongly depends on the concrete implementation of
MxL 2.0, the MxL 2.0 interpreter consists of a component called ”MxL Connector”, which
abstracts the interaction between MxL and the information model of its concrete imple-
mentation. In fact, the connector is the interface between MxL 2.0 and its implementing
system carrying out all their interactions. The MxL Connector is a new component in MxL
2.0 and facilitates the implementation of MxL in arbitrary tools.
Basically, a MxL Connector is an abstract class, which has to be implemented in order to
connect to a system like Tricia, whereas the connector provides the following methods:

Access to information model The main purpose of the MxL Connector is the abstraction
of the access to a concrete information model. Therefore, the connector provides a
multitude of methods for gathering an information model’s schema data (e.g., get an
attribute by its name and owner type) as well as its instances (e.g., get attribute value
by its name and owner object).

Mapping of basic types As described in Subsection 3.1.1, MxL 2.0 provides a set of ba-
sic types. Consequently, these types have to be supported by each implementation
of MxL 2.0, whereas the MxL Connector maps the types of the implementing sys-
tem to MxL 2.0’s types. This mapping is defined by the connector’s sub-component
TypeProvider.

Extensions of global identifiers While MxL 2.0 provides already a (very minimalistic)
set of global identifiers (e.g., Today returning the current date, c.f. Subsection 3.1.5),
the MxL Connector allows the provision of implementation-specific global identi-
fiers. This extensibility is defined by the connector’s sub-component GlobalIdentifier-
Provider.

Extensions of basic functions Similar to the global identifiers, MxL 2.0 provides already
a set of default basic functions, which also includes the sequence functions from Sub-
section 3.1.4. However, for certain implementations it might be necessary to extend
this set by implementation-specific functions, whereas the MxL Connector supports
this extensibility of basic functions. This extensibility is defined by the connector’s
sub-component FunctionProvider.

The MxL Connector and its sub-components are depicted in Figure 3.7.

3.2.4. Type Checker

While the MxL 1.0 interpreter already contains a scanner, parser, as well as an evaluation
engine, the type checker, along with the MxL Connector, is new in MxL 2.0. This com-
ponent of the interpreter takes an AST as input and applies a type check onto the root
expression object triggering a cascading type check of the whole AST.
The concrete operation launched by the type checker strongly depends on the type of ex-
pression. Trivial expressions (e.g., NumberExpression, StringExpression, BooleanExpression,

42

3.2. Interpretation

MxLConnector

TypeProvider

GlobalIdentifierProvider

FunctionProvider

typeProvider

giProvider

bfProvider

1

1

1

1

Interface to model‘s schema
Interface to model‘s instances

Mapping of basic types

Extensibility of global identifiers

Extensibility of basic functions

Figure 3.7.: The MxL 2.0 Connector and its sub-components.

NullExpression) do not have to be checked, since their types are fixed, whereas operator
expressions (e.g., arithmetic and conditional expressions) are either fixed or purely de-
pending on their operands (e.g., if the operands of the AdditionExpression are numbers, the
addition itself returns a number too).
However, certain expressions require more effort to determine their return type.

Expressions interacting with the information model

There are basically two expression types interacting with the information model: the El-
ementSelectorExpression (of the form <context object>.<member>) and the IdentifierExpres-
sion.
For example, the derived attribute Costs of the type Employee from Subsection 3.1.5 was
defined as follows (containing two element selectors):

t h i s . Sa lary * t h i s . Hours

This expression will be parsed to the AST depicted in Figure 3.8.
An ElementSelectorExpression consists of two sub-expressions, namely of a left operand,
which establishes the context for the right operand, which has to be an identifier (option-
ally enclosed by single quotes). Hence, the type checker first determines the type of the
left operand and subsequently checks if this type has a member with the name defined by
the identifier. The element selector processing steps are done in the following order:

ESPS 1 If the left operand’s type is a subtype of Date, and the identifier is one of day, month,
or year, the return type of the element selector is a number representing the desired
part of a date.

ESPS 2 If the left operand’s type is a subtype of Map, the element selector’s return type is
Object (Since the Map-type does not support type parametrization

43

3. MxL 2.0

Multipliation

. this Hours *

ElementSelector

Identifier This

ElementSelector

.

This Identifier

this Salary

Figure 3.8.: The AST for the expression this.Salary * this.Hours

ESPS 3 If there is a basic function compatible to the left operand’s type and having the
name defined by the identifier, the element selector’s type is the determined basic
function’s type

ESPS 4 If there is a custom function compatible to the left operand’s type and having the
name defined by the identifier, the element selector’s type is the determined cus-
tom function’s type

ESPS 5 If the left operand’s type is a subtype of Entity, the type checker obtains this type
from the underlying information model and checks for the existence of an an at-
tribute or derived attribute with the name defined by the identifier. If yes, the
element selector’s type is the type of the determined attribute or derived attribute.

ESPS 6 If the element selector cannot be resolved, a MxLTypeCheckingException is fired.

The purpose of this processing order is the resolution of name collisions in case of multiple
members with the same name.
The type checking process for the derived attribute Costs from above is depicted in Fig-
ure 3.9.
As stated in Subsection 3.1.5, the derived attribute Costs of the type Employee is also defin-
able as follows:

Sa lary * Hours

While this definition is semantically equivalent to the previous one, there are syntactical
differences, since the AST generated by the MxL 2.0 parser consists only of a Multiplica-
tionExpression whose sub-expressions are two IdentifierExpressions instead of ElementSelec-
torExpressions.
The identifier processing steps are done in the following order:

IPS 1 If there is a name-value-binding with the given name in the current context (e.g.,
a function’s parameter, or a binding created by the let-construct), the determined
name-value-binding’s type is returned

IPS 2 If there is a global identifier with the given name, its type is returned

44

3.2. Interpretation

IPS 3 If there is a static basic function with the given name, the basic function’s type is
returned

IPS 4 If there is a static custom function with the given name, the custom function’s type
is returned

IPS 5 If there is a member of the current this object with the given name, this member’s
type is returned. This is the implementation of the ”implicit this” concept introduced
in Subsection 3.1.5, which is done by executing the type checker of the element se-
lector, whereas the object identified by this is used as the context object.

IPS 6 If the identifier cannot be resolved, a MxLTypeCheckingException is fired.

For example, by type checking the derived attribute Costs, processing step IPS 5 with Em-
ployee as the type of the ”implicit this” is applied, which basically yields to a very similar
process as depicted in Figure 3.9.
Each time the type checker obtains a certain information model element (whether by an
ElementSelectorExpression or an IdentifierExpression), it does not only determine its type, but
links the referring identifier of the expression to its corresponding information element by
remembering the information model element’s ID. Hence, a renaming or other changes of
the information model element does not affect the integrity of the MxL expression, since
the information model element is still obtainable by the typed expression.
Since an expression is stored by its internal JSON representation, which also serializes the
IDs of the information model elements, this linking is also retained on the expression’s
storage.
For example, the type checking process depicted in Figure 3.9 stores the IDs of both the
Salary and Hours attribute in the corresponding ElementSelectorExpression. Hence in MxL
2.0’s implementation in Tricia – TxL 2.0 – the type checker determines the IDs of the cor-
responding PropertyDefinitions and assigns them to the expression object, supporting the
serialization and storage of the expression object.

45

3. MxL 2.0

Hours *

Identifier This

ElementSelector

.

This Identifier

this Salary

MxL 2.0 AST

Information model (e.g., Tricia)

PropertyDefinition :
Hours

01
Multipliation

ElementSelector

PropertyDefinition :
Salary

TypeDefinition :
Employee

02

03

04 05

06

07

09

10

11 12

13

14 15

16 19

20

21

22

08 17 18

. this

MxL Connector

Figure 3.9.: The type checking process for the derived attribute Costs is initiated by check-
ing the root of the AST which is the MultiplicationExpression (step 01). Checking
the left operand of the multiplication causes the determination of the this ob-
ject’s type (steps 02-04), which is Employee, since this is the derived attribute’s
owner. Subsequently, the type checker continues with the element selector’s
processing steps (05), whereas in this example the identifier Salary refers to an
attribute of type Employee. This attribute is obtained via the MxL Connector
introduced in Subsection 3.2.3 (steps 06-09). The type of the Salary attribute
is returned to the MultipliationExpression (steps 10-11), which does the same
process again for the right operand (steps 12-21), and finally returns the type
Number as result of the MultiplicationExpression and type checking process as a
whole (step 22).

46

3.2. Interpretation

Function application expression

While checking the type of an expression for the trivial application of a function would be
rather simple, the following two features of MxL 2.0 are challenging for the type checking
process:

• Although MxL 2.0 does not support the implementation of generic functions by the
use of type parameters, it provides a mechanism to define dependencies between a
function’s actual owner type, its actual parameter types and its actual return type.
These mechanism is implemented by the two components FunctionParameterType-
Checker and FunctionReturnTypeInferer.
For example, the select-function was introduced in Table 3.2 as a function with owner
type Sequence<T>, parameter type Function<T,V>, and return type Sequence<V>.
Hence, the parameter type depends on the actual owner type, while the return type
depends on the actual parameter type. Since MxL 2.0 does not support type param-
eters in the implementation of functions, the select is implemented rather general as
function with owner type Sequence, parameter type Function<Any,Object>, and re-
turn type Sequence, whereas Any is a pseudo-type, which is a subtype of all other
types (also known as bottom, since on the bottom of the type hierarchy [31]). This
pseudo-type is important for the definition of parameter types, because of the con-
travariance of function types [31]. However, the FunctionParameterTypeChecker is able
to concretize the parameter types based on an actual owner type, while the Function-
ReturnTypeInferer can infer an actual return type based on an actual owner type and
actual parameter types.
Both the FunctionParameterTypeChecker and the FunctionReturnTypeInferer are provided
by the the function which has to be executed, i.e., each function may implement ar-
bitrary dependencies between its owner type, parameter types, and return type.
The processing steps of the function application are as follows:

FAPS 1 Determine the executing function’s type

FAPS 2 Retrieve and execute the FunctionParameterTypeChecker, which determines the
actual parameter types FunctionReturnTypeInferer based on the actual owner
type of the function

FAPS 3 Retrieve and execute the FunctionReturnTypeInferer, which returns the actual re-
turn type of the function based on the actual owner type and the actual param-
eter types

For example, the following expression increments each of the sequence’s numbers:

[1 , 2 , 3] . s e l e c t (n => n + 1)

While the defined owner type of the select-function is Sequence, its actual owner type
in this example is Sequence<Number>. Based on this actual owner type, the Func-
tionParameterTypeChecker infers that the parameter type has to be at least of type
Function<Number,Object>. However, by inferring the lambdas return type, Func-
tion<Number,Number> can be observed as the actual parameter type of the select-
function. Subsequently, the FunctionReturnTypeInferer infers the return type of the
FunctionApplicationExpression, which is Function<Number>, since the return type of
the lambda is also Number.

47

3. MxL 2.0

Determine actual type of each parameter

Standard type check
of parameter

Determine
Function type

Type check of function application

Infer actual return
type

[Success]

Interpretation as
implicit lambda

[Failure]

[zero/one-dimensional
function expected]

Type check of
implicit lambda

Type checking exception

[else]

[Failure]

[Success]

Figure 3.10.: Type checking process of the function application expression depicted as
UML activity diagram [17]. This expression uses the default FunctionParam-
eterTypeChecker, which implements the ”implicit lambda” feature introduced
in Subsection 3.1.3.

• As stated in Subsection 3.1.3, MxL 2.0 supports ”implicit lambdas”. Hence, if the ex-
pected type of a parameter is either a zero-dimensional or one-dimensional function
(function with either no ore one parameter), the type checker determines the actual
type of this parameter. If the actual parameter type is not conform to the expected
one, the type checker interprets the parameter expression as the method stub of a
lambda expression and rechecks the parameter’s type. This functionality is imple-
mented by the default FunctionParameterTypeChecker as shown in Figure 3.10.

Multiple purpose expressions

MxL 2.0 consists of several expression types, which first have to be analyzed to observe
their semantic. For example, the AdditionExpression is both the arithmetic addition and the
string concatenation.
However, the semantic of a multiple purpose expressions can already be determined at
compile time. Therefore, a check of an expression’s semantic at runtime is neither neces-
sary nor efficient. To set the concrete operation an expression has to perform at runtime,
the type checker has to set the so-called Executor of the multiple purpose expression, which
implements this operation.
For example, the AdditionExpression provides an abstract AdditionExecutor as well as two
concrete implementations ArithmeticAdditionExecutor (performing an arithmetic addition
at runtime) and StringConcatenationExecutor (performing a string concatenation at run-
time), as shown in Figure 3.11. The type checker determines the type of the plus-operator’s
operands, and instantiates either an ArithmeticAdditionExecutor (if both operands are num-
bers) or StringConcatenationExecutor (if the first operand is a string). At runtime, the eval-
uation engine calls the execute-function of the Executor without checking its semantics.

48

3.2. Interpretation

This executor pattern (a variation of the prevalent prototype pattern [32]) is also applied
on the SubtractionExpression (may be arithmetic subtraction or a date difference operation),
certain comparison expressions (either numerical or date comparisons), and the previous
mentioned ElementSelectorExpression and IdentifierSelection, whereas the executors of Ele-
mentSelectorExpression and IdentifierSelection are determined by the mentioned processing
steps. For example, the executor for both ElementSelectorExpressions in Figure 3.9 is set to
AttributeExecutor, whereas this executor is parametrized with the ID of the corresponding
attribute.
Since the executor is included in the serialization of the expression object, the assignment
of the concrete executor implementation is also stored and hence retained through the
serialization-deserialization cycle of the expression object.

AdditionExpression

AdditionExecutor

ArithmeticAdditionExecutor StringConcatenationExecutor

executor

1

1

Figure 3.11.: UML class diagram [17] showing the AdditionExpression and its executor types

3.2.5. Evaluation engine

Although MxL 1.0 already had an evaluation engine, it does not have much in common
with the evaluation engine of MxL 2.0, since in MxL 2.0, type checking is already done at
runtime by the type checker, whereas MxL 1.0 was a dynamically typed language. Further-
more, expressions with potentially multiple semantics are already analyzed at runtime, i.e.,
the operation which has to be performed is already specified by the type checker.
Basically, the process of evaluating an AST is very similar to the process of an AST’s type
checking, i.e., the evaluation is initiated at the AST’s root and cascaded through the whole
tree. For example, the evaluation process for the previously defined derived attribute
Costs, whose AST is depicted in Figure 3.8, nearly looks like the type checking process in
Figure 3.9, except that the evaluation engine processes instance data instead of schematic
information.
Hence, due to the extensive preliminary work by the type checker, evaluating an expres-
sion is rather simple. Most expressions are either directly expressible by proper Java state-
ments (e.g., arithmetic and logical operations) or evaluable by executing the executor as
mentioned in the previous subsection (e.g., element selectors and identifiers, eventually
triggering a query of the information model through the MxL Connector).

Stack trace

In order to identify potential infinite loops as well as to localize MxLEvaluationExceptions,
the evaluation engine manages a stack trace.

49

3. MxL 2.0

Each time the evaluation engine executes a function or derived attribute, it pushes the
function’s or derived attribute’s identifier onto a call stack (inclusively some context pa-
rameters, e.g., the object a function is applied on). If the execution of the function or de-
rived attribute is completed, the evaluation engine takes off the call stack’s upper element.
The stack trace can be understood as a snapshot of the current call stack.
Therefore, if an MxLEvaluationException occurs while evaluating an expression, the stack
trace represents a path to the source of the MxLEvaluationException. Moreover, since the
call stack also contains some context parameters, the evaluation engine is able to check
if a function or derived attribute, which has to be evaluated, is already evaluating with
the current parameters, which would indicate an infinite loop. In this case, the evaluation
engine stops the evaluation and throws a proper MxLEvaluationException.

3.3. TxL 2.0 - MxL 2.0’s implementation in Tricia

While Sections 3.1 and 3.2 described the implementation-independent aspects, this section
focuses on a certain implementation of MxL 2.0, namely its implementation in Tricia called
TxL 2.0.

3.3.1. MxL Connector for Tricia

As described in Subsection 3.2.3, one of MxL 2.0’s components – the MxL 2.0 Connector
– manages the interaction between MxL 2.0 and a concrete information model. Hence, in
order to allow MxL 2.0 to access Tricia’s information model, a MxL Connector for Tricia
has to be implemented.
However, in order to successfully implement MxL 2.0, Tricia has to meet the following
requirements:

• All the information model elements, which have to be accessed via MxL 2.0, as well
as all MxL assets as depicted in Figure 3.2 must implement certain MxL 2.0 inter-
faces. For example, Tricia’s TypeDefinition (c.f. Subsection 2.2.1) has to implement
the MxL 2.0 interface MxLType, the PropertyDefinition has to implement the interface
MxLAttribute, the Tricia class Page has to implement the interface MxLEntity, etc.

• Since MxL 2.0 requires the MxL Core Package (c.f. Subsection 3.1.5) as container for
all basic types, basic functions as well as global identifiers, Tricia has to ensure the
existence of a corresponding MxL Core Space (Tricia’s counterpart of packages)

• Tricia has to provide all basic types required by MxL 2.0 (c.f. Subsection 3.1.1). For
this purpose, Tricia has to create all these basic types on the platform’s initializa-
tion. Moreover, Tricia extends this set of basic types by the tool-specific types Page,
Document, Principal, Person, and Group as depicted in Figure 3.1.

Fulfilling these requirements enables the implementation of a MxL Connector for Tricia,
which abstracts the access to Tricia’s information model and maps the MxL basic types to
Tricia’s counter parts.
Although the MxL Connector would support the extension of the set of basic functions as
well as the extension of the set of global identifiers, the Tricia connector does not use this

50

3.3. TxL 2.0 - MxL 2.0’s implementation in Tricia

feature.
As stated in Subsection 3.1.6, MxL 2.0 supports a find construct returning all instances of a
certain type. However, this construct just forwards this command to the MxL Connector,
so that each implementing tool has to process the query in its own specific way. Tricia
determines all pages of a certain type by its integrated search engine elasticsearch [33].

3.3.2. Basic MxL infrastructure in Tricia

As described in Subsection 3.1.5, MxL 2.0 consists of several assets arranged in a certain
structure called the MxL 2.0 asset hierarchy (c.f. Figure 3.2. The root of the hierarchy is the
MxL Environment, whereas in TxL 2.0 this environment is represented by Tricia.
A central access point to MxL 2.0 in Tricia is the MxL Core Space, which is not only the
container for MxL 2.0’s basic assets, but also provides a proper user interface (UI) for its
main assets:

MxL Core Space - Homepage The homepage of the MxL Core Space is accessible via a
button presented by a magic wand in Tricia’s navigation bar at the top. It shows
some statistics about the usage of certain MxL assets, i.e., the page consists of a list of
types breaking down the number of basic functions, custom functions, and derived
attributes, which are defined per type. Types without these MxL assets are omitted
in this view.

Basic Types This view lists all basic types of MxL 2.0 as well as TxL 2.0’s basic types (c.f.
Figure 3.1).

Global Static Functions As stated in Subsection 3.1.5, the MxL Core Package may con-
tain global static functions, whereas the term global means, that the function is as-
signed to the MxL Core Package and accessible in each package. The set of default
global static functions provided by default by MxL 2.0 are the date parse function
date, the exponent function exp, and the natural logarithm function ln. However, this
view also contains a button for the creation of new global static custom functions in
order to extend this default set (c.f. Subsection 3.3.3).

Global identifiers Again, this is an overview for one of MxL 2.0’s assets, namely its global
identifiers. Since TxL 2.0 does not extend MxL 2.0’s default set of global identifiers,
this page will show only the Today identifier returning the current date as well as an
identifier representing the mathematical constant Pi.

Expression Test In order to test some expression as well es to evaluate its performance,
this view offers a UI to submit an arbitrary MxL 2.0 expression and shows the results
and duration of its interpretation and evaluation.

Invalid MxL Providers MxL providers are assets defined by at least one MxL expression,
e.g., custom functions and derived attributes (c.f. also Subsection 3.3.5). However,
since Tricia allows the embedding expressions into a page’s rich-text content, pages
are also potential MxL providers (c.f. Subsection 3.3.4).
While on creation of an MxL expression its integrity is checked, this integrity can be
violated over time, e.g., by deleting certain types or properties.

51

3. MxL 2.0

Hence, the view ”Invalid MxL Providers” shows all providers, whose integrity is
currently violated. If there are no such providers, this view is hidden.

While the MxL Core Space covers MxL 2.0’s basic assets, the custom packages in Tricia
are represented by work spaces. Hence, each work space provides a view ”Static Func-
tions” listing all its static functions and allowing the definition of new ones. While the
”Static Functions” view was created as part of the implementation of TxL 2.0, the view
”Types” is a default view of Tricia. However, the UI of individual types was extended by
the following features:

Super type and (direct) sub types While Tricia does not support inheritance, MxL 2.0
does. Therefore, the super type of each custom type definition is TxL 2.0’s basic type
Page by default (if the type definition applies to pages). However, a type’s super type
as well as its (direct) sub types are displayed on the type’s settings view.

Derived attributes As previously mentioned, one of MxL 2.0’s main assets are derived
attributes, whose values are not persisted, but computed based on a MxL 2.0 expres-
sion. Therefore, a type’s settings page not only lists its common attributes, but also
the derived attributes (c.f. Subsection 3.3.3).

Functions As depicted in the MxL Asset Hierarchy in Figure 3.2, a custom type not only
consists of attributes and derived attributes, but also of basic and custom functions,
which are listed in the view ”Functions” of each type, i.e., the list contains all func-
tions whose owner type is the selected one. Moreover, this view also allows the
definition of new functions for the selected type (c.f. Subsection 3.3.3).

3.3.3. Derived attributes and custom functions

While spaces, type definitions, and property definitions are default entities in Tricia and
able to implement MxL 2.0’s packages, types, and attributes, originally there are no cor-
responding Tricia entities for derived attributes and custom functions. As a consequence,
these two entities were implemented as DerivedHybridProperties and CustomFunctions as
depicted in Figure 3.12. Since global identifiers and basic functions are not definable at
runtime, they are not implemented as persistable Tricia entities and hence are not included
in this Figure.
As mentioned in the previous section, derived attributes are managed on the settings page
of the derived attribute’s owner type. By selecting a derived attribute (c.f. Figure 3.13), its
associated MxL expression as well as an inferred return type are shown. Furthermore, so-
called incoming and outgoing ”MxL References” are listed, which are described in more
detail in Subsection 3.3.5. New derived attributes can be created by clicking the ”New De-
rived Attribute” button on the settings view of a type, while there are also hyperlinks for
editing and deleting existing ones.
The only properties of derived attributes are its name, a short description, and its defini-
tion represented by a MxL expression. While both the name and the description are simple
strings, the expression property is of a type MxLProperty, which provides the following
features:

52

3.3. TxL 2.0 - MxL 2.0’s implementation in Tricia

TypeDefinition
propertyDefinitions

Description: String

PropertyDefinition

Type : TypeConstraint

*

Name : String
Name : String

Multiplicity : Multiplicity

DerivedPropertyDefinition

Expression : MxL

Name : String

CustomFunction

Description: String

Name : String

customFunctions

derivedPropertyDefinitions

*

Parameters : MxLParameters

MethodStub: MxL
*

Space

Name : String

0..1

1

1

*

1

*

space

space

1

Figure 3.12.: UML class diagram [17] showing Tricia’s default entities Space, TypeDefinition,
and PropertyDefinition as well as TxL’s new entities DerivedPropertyDefinition
and CustomFunction.

Editor When viewing and editing a MxLProperty, the in-browser code editor CodeMir-
ror1 is used in order to provide a proper UI for MxL expressions. This code editor
supports syntax highlighting as well as auto completion (c.f. Figure 3.14).

Testing In order to test a defined expression by evaluating it, the UI of the MxLProperty of-
fers a ”Try expression” button, whereas the this object as well as eventual parameter
values are instantiated with exemplary data.

Validation On creating and updating an expression, an automated validation of the ex-
pression is triggered, i.e., Tricia tries to interpret (including type checking) the ex-
pression. If the interpretation is not successful (i.e., if the parser or the type checker
throws an MxLTypeCheckingException), the function cannot be created or updated.
However, in case of an error, a proper error message is displayed in order to support
the user to solve the problem.

Analysis As mentioned later on in Subsection 3.3.5, MxL expressions can be analyzed
in order to determine outgoing MxL references, whereas the MxLProperty provides
some useful methods for this purpose, e.g., a method for updating all MxL references
of an MxLProperty’s expression.

In contrast to derived attributes, a type’s custom functions (as well as all basic functions)
are listed on a separate view of this type (”Functions”). Again, this view provides a button
for the creation of new custom functions as well as hyperlinks for editing and deleting
existing ones. By selecting a custom function (c.f. Figure 3.15), its name, description, pa-

1http://codemirror.net

53

http://codemirror.net

3. MxL 2.0

Figure 3.13.: The settings view for the type Employee of Figure 3.3 showing its attributes
and derived attributes. By selecting a derived attribute, the user will be nav-
igated to the derived attribute’s definition. In this example, the derived at-
tribute Costs is defined based on an employee’s attribute Salary and Hours,
whereas an ”implicit this” is used to shorten the expression.

Figure 3.14.: The in-browser code editor for editing MxLProperties. This code editor sup-
ports syntax highlighting as well as auto completion

rameters and method stub are shown, as well as a inferred return type and the custom
function’s MxL References (c.f. Subsection 3.3.5). A function’s name and description are
strings, whereas the method stub is again implemented as MxLProperty. The type of the
parameter property is MxLParametersProperty. In contrast to MxLProperty, a MxLParam-
etersProperty does not allow arbitrary MxL expressions, but just the definition of typed
parameters.

3.3.4. Embedded expressions

While the previous subsection covered MxL 2.0’s usage for the formal definition of MxL
assets (derived attributes and custom functions), its implementation in Tricia supports yet
another use case, namely the embedding of a MxL 2.0 expression in a page’s rich-text con-
tent.
In general, rich-text properties (like the content of a wiki page) support so-called BlockSub-

54

3.3. TxL 2.0 - MxL 2.0’s implementation in Tricia

Figure 3.15.: The functions view for the type Department of Figure 3.3 showing all custom
functions whose owner type is Department. By selecting a custom function,
the user will be navigated to the custom function’s definition. In this ex-
ample, the custom function employeesByCosts returns all employees of a de-
partment, whose Costs (the derived attribute from Figure 3.13) is in the given
range. The range can be set by two parameters of type Number, whereas the
second one is optional. Hence, both anyDep.employeesByCosts(200) and any-
Dep.employeesByCosts(200,300) are valid applications of the function.

stitutions, which are executable blocks inside the HTML markup defining the properties
value. In edit mode of the property, a block’s definition is shown, while in view mode
Tricia executes the block and substitutes its definition by the result of the execution.
By implementing MxL 2.0 in Tricia, this BlockSubstitution feature was extended by the eval
block. This allows the embedding of MxL expressions as blocks (by serializing them to
their internal JSON representation), whereas an eval block’s execution is the evaluation of
the MxL expression.
For example, a content of a page might be defined as follows (for the sake of clarity, the
internal JSON representation is reduced to its basic parts):

<p>1 + 2 = $ [eval () $
{ ” leftOperand ” : {” value ” : 1 , ” express iontype ” : ”Number” } ,

” express iontype ” : ” Addition ” , ” executor ” : ”number” ,
” rightOperand ” : { ” value ” : 2 , ” express iontype ” : ”Number”}}

$eval] $</p>

55

3. MxL 2.0

Figure 3.16.: The rich-text editor of Tricia provides a button opening a MxL code editor.

In view mode of the property, Tricia executes the eval block by evaluating the MxL 2.0
expression, whereas the result of the evaluation would be the following:

<p>1 + 2 = 3</p>

In order to embed a MxL expression, Tricia’s rich-text editor (based on the JavaScript
WYSIWYG editor TinyMCE [34]) provides a button, which opens a modal dialog contain-
ing a MxL code editor (c.f. Figure 3.16). By clicking on ”Save”, the entered expression will
be validated by running the type checker, serialized to its internal JSON representation,
and embedded in the HTML markup with a surrounding eval block.
The page the content property is part of is accessible via the this keyword. Hence, when
editing a page of type Employee (as defined in Figure 3.3), an embedded expression can
access its properties by this.Salary or this.Costs, enabling the definition of dynamic HTML-
based visualizations based on the information model’s data. For example, the following
expression defines a visualization showing either a green or a red traffic light, dependent
on the value of the current employee’s Costs:

i f t h i s . Costs > 30
then ””
e l s e ””

More advanced visualizations are subject in Section 6.5.

3.3.5. Compile-time analysis of MxL expressions in Tricia

The main motivation for the development of MxL 2.0 was the capability of a compile-time
analysis of a MxL expression in order to implement the Living KPIs, whereas the analysis
of an expression mainly consists of the determination of all MxL assets the expression’s
identifiers refer to.
While MxL 2.0 expressions are already analyzable, Tricia has to provide the infrastructure
to manage the references between the MxL assets in order to allow an efficient determi-
nation of all MxL providers (assets defined by at least one MxL expression, e.g., custom

56

3.3. TxL 2.0 - MxL 2.0’s implementation in Tricia

MxLProvider MxLReferable
source

MxLReference
target

InvalidMxLReference

1 1

CustomFunction PropertyDefinition … …

*

*

*

Figure 3.17.: Tricia’s conceptual model of the MxL reference infrastructure.

functions or derived attributes) affected by a certain action, e.g., renaming of a property.
The conceptual model of the MxL reference infrastructure implemented in Tricia is de-
picted in Figure 3.17. As already explained, MxL providers are assets defined by MxL
expressions, which may refer to other MxL assets through identifiers. In contrast, MxL
referables are assets, which can be accessed in MxL expressions by identifiers or element
selectors, i.e., Spaces (spaces), Types, Basic functions, Custom Functions, Global identifiers, prop-
erty definitions (attributes), as well as Derived attributes (derived property definitions).
However, since persistable Tricia entities (e.g., CustomFunction and PropertyDefinition) are
already derived from the Tricia class PersistentEntity, and Java does not support multiple
inheritance, Tricia uses another code reusability pattern, namely Mixins [35].
Since MxL references are persistable objects, the determination of all MxL providers refer-
ring to a certain MxL referable is rather simple under the requirement of a proper man-
agement of these MxL references. Hence, on each creation and update of MxL providers
and MxL referables, Tricia checks and eventually rearranges involved MxL references, and
creates an InvalidMxLReference in case of a failed type check of a MxL provider.
For example, the exemplary information model of Figure 3.13 would yield to the MxL
references depicted in Figure 3.18. The MxL reference from the custom function employ-
eesByCosts to the type Number shows, that not only a custom function’s method stub is
affected by its analysis, but also its parameter definitions.
So if the attribute Hours of type Employee is renamed, Tricia determines all its incoming
MxL references (from the derived attribute Costs) and updates the corresponding identi-
fiers referring to this attribute. Hence, the integrity of the MxL environment is preserved.
If the attribute Hours is deleted, Tricia allows the user to choose from the following two
options:

Delete all MxL providers referring to this attribute However, since the deletion of the
derived attribute Costs would make the derived attribute Employee Costs inconsistent,
all MxL providers transitively referring to the attribute are deleted.

Do nothing This option creates an InvalidMxLReference for each MxL provider referring
to the attribute Hours, marking the MxL provider as inconsistent. As mentioned in
Subsection 3.3.2, all inconsistent MxL providers are listed in the view Invalid MxL
Providers of the MxL Core Space.

Due to the capability of embedding MxL expressions into a page’s rich-text content, pages
are also possible MxL providers. Hence, the deletion of an MxL expression does not delete

57

3. MxL 2.0

Types Basic Functions

Custom Functions Derived Attributes

Attributes

Department::
employeesByCosts

Employee::
Costs

Project::
Employee Costs

Employee

Number

Sequence::
where

Sequence::
sum

Employee::
Hours

Project::
Member

Employee::
Salary

Employee::
Location

Figure 3.18.: MxL references for the exemplary information model of Figure 3.3 with the
derived attributes Costs (as defined in Figure 3.13 and Employee Costs (as sum
of all Costs of the project’s members) as well as the custom function employees-
ByCosts (as defined in Figure 3.15).

the entire page, but just the eval block containing the expression. Alternatively, the block
can also be replaced by the latest evaluated value of the MxL expression.
As depicted in Figures 3.13 and 3.15, the incoming and outgoing MxL references are shown
on each MxL asset’s view, whereas they are grouped by their type. More advanced visual-
izations of these MxL references are discussed in Section 6.5.

58

4. Towards Living KPIs

The development of MxL 2.0 equips Tricia with the basic functionality required for the
implementation of the Living KPIs by providing an analyzable DSL capable of defining
and adapting the KPIs of the EAM KPI Catalog to the organization-specific context.
However, the EAM KPI structure has to be implemented in Tricia in order to project the
EAM KPI Catalog’s experience to an integrated EAM environment. This includes the EAM
KPI structure on the one hand, and the catalog’s instances – the KPIs – on the other hand.
Hence, Section 4.1 covers the development of a type-based template engine, while the
deployment of Tricia applications is subject in Section 4.2. Section 4.3 puts it all together
and describes a prototype of the Living KPIs.

4.1. Implementation of a type-based template engine

As already stated in Section 1.3, applying EAM KPI structure as defined by Matthes et
al. [12] to Tricia facilitates the familiarization with the Living KPIs. In this context, a page’s
layout defines the positions and appearance of the page’s attributes, whereas a template is
the prototype for a page’s layout.
Since the catalog’s KPI descriptions are implemented as TypeDefinitions with the GSEs
from Subsection 2.1.1 as well as the OSSEs from Subsection 2.1.2 as its PropertyDefinitions,
Tricia has to provide a mechanism to apply a certain layout to all instances of a type,
otherwise the problems mentioned in Subsection 2.4.3 can occur.

4.1.1. Existing template engine

Although Tricia already supports a HTML-based template engine, there is just one tem-
plate affecting all pages without taking into account the type definition, which is assigned
to them. Moreover, just the appearance of the so-called ”built-in” attributes is affectable
by the page template, which includes the page’s name as well as the page’s rich-text con-
tent, but excludes all type-specific attributes (e.g., the attributes Salary and Hours of type
Employee in Figure 3.3). Since the page’s content is implemented as a rich-text property,
there are no restrictions regarding the page’s layout and design.

4.1.2. Type-based template engine

In order to support type-based templates, Tricia has to be extended to define a template
for each of the information model’s types in order to define the layout of their instances.
Furthermore, since the template is HTML based, the definition of type-based Cascading
Style Sheet (CSS) classes allows a central organization of the design of the type’s instances.
Hence, by implementing a type-based template engine in Tricia, the type definition is ex-
tended by the two properties PageTemplate and PageTemplateCSS defining the appearance

59

4. Towards Living KPIs

TypeDefinition

propertyDefinitions

Description: String

PropertyDefinition

Type : TypeConstraint

*

Name : String
Name : String

Multiplicity : Multiplicity

DerivedPropertyDefinition

Expression : MxL

Name : String

CustomFunction

Description: String

Name : String

customFunctions

derivedPropertyDefinitions

*

Parameters : MxLParameters

MethodStub: MxL
*

Space

Name : String

0..1

1

1

*

1

*

space

space

1

PageTemplate: String

PageTemplateCSS: String

Figure 4.1.: Extension of Tricia’s TypeDefinition by the properties PageTemplate and
PageTemplateCSS.

of pages which are assigned to this type (c.f. Figure 4.1).
For the definition of the template and the CSS classes a new view ”Page Template” for type
definitions is available. Initially, the template and the CSS classes are empty, as shown in
Figure 4.2. Since the template is internally managed as rich-text property, its editing is
done via Tricia’s TinyMCE-based rich-text editor. However, in contrast to rich-text con-
tents of page instances, page templates allow the embedding of properties, i.e., they posi-
tion the corresponding type’s attributes. For this purpose, the rich-text editor provides a
button for the embedding of properties for the definition of page templates. This button
opens a modal dialog containing a list of all the current type’s attributes (built-in, regu-
lar, and derived attributes). An additional drop-down list allows to select, if either the
attribute’s name, value, or type has to be inserted in the template (c.f. Figure 4.3). By click-
ing the save-button, the selected options are serialized to a JSON-object of the following
form:

{ p r o p e r t y F u l l I d e n t i f i e r : ”<b u i l t i n | regular | derived><propertyid>” ,
propertyDisplayOption : ”<Value |Name | Type>”}

This JSON-object is embedded in the page template surrounded by a prop block (BlockSub-
stitutions were already explained in Subsection 3.3.4). For example, to embed the value of
property Salary in Employee’s page template, the following block has to be inserted (assum-
ing the ID of the attribute is ”employeesalary”):

$ [prop () $ {” p r o p e r t y F u l l I d e n t i f i e r ” : ” regularemployeesalary ” ,
” propertyDisplayOption ” : ”Value”} $prop] $

In addition to properties, MxL expression can also be embedded in page templates (as
described in Subsection 3.3.4), whereas this expressions are evaluated for the instances of
the corresponding type.

60

4.1. Implementation of a type-based template engine

View

Template
definition

CSS classes

Figure 4.2.: The ”Page Template” view of the exemplary type definition Employee, whereas
neither a template nor CSS classes are defined.

Figure 4.3.: The ”Add/Edit property” button for the definition of page templates opens
a modal dialog for the selection of a property and its display option (name,
value, or the attribute’s type). Built-in attributes are colored black, regular
attributes blue, and derived attributes are orange

61

4. Towards Living KPIs

In the view mode of the page template, both the eval and prop blocks are substituted by a
readable description of the embedded property or expression.
Each time a page is requested, it checks if its type provides a page template. If yes, it loads
the template, executes all the template’s eval and prop blocks, and inserts the instantiated
template into the page in place of its rich-text content.

4.1.3. Example of a page template

In order to define the layout of pages, e.g., of type Employee (as defined in Figure 3.3,
extended by the attributes First name, Last name, and Picture), an Employee page template
can be defined as shown in Figure 4.4, whereas the function projectsAsHtmlList is defined
as follows:

”” +
get P r o j e c t whereis Member

. s e l e c t (p => ”< l i >” + p + ”</l i >”)

. aggregate ((a , b) => a + b , ””) + ””

The following snippet is an excerpt of Employee’s page template:

<div c l a s s =” p r o f i l e b o x p r o f i l e p i c t u r e ”>

$ [prop () $ {” p r o p e r t y F u l l I d e n t i f i e r ” : ” regularemployeepicture ” ,
” propertyDisplayOption ” : ”Value”} $prop] $

</div>
. . .

By using CSS classes (e.g., ”profilebox” and ”profilepicture”), recurrent designs can be
defined once and used multiple times. Therefore, the type Employee defines its CSS classes
as follows:

. p r o f i l e p i c t u r e { f l o a t : l e f t ;}

. p r o f i l e b o x {display : i n l i n e−t a b l e ; width : 1 5 0 px ; height : 2 3 0 px ;
border−s t y l e : s o l i d ; border−width : 1px ; border−c o l o r : # eeeeee ;
padding : 5px ; margin : 4px ; }

By applying the CSS classes onto the template leads to instances as shown in Figure 4.4.

4.2. Deployment of Tricia applications

While all the requirements for the implementation of the Living KPIs prototype are met
by the development of both MxL 2.0 (c.f. Chapter 3) and the type-based template engine
(as described in Section 4.1), the last remaining issue is the deployment of the Living KPIs
environment.
The deployment of the Living KPIs includes the following artifacts:

Integrated information model Initially, the Living KPIs have to provide the whole inte-
grated information model as defined by the EAM KPI Catalog and as depicted in

62

4.2. Deployment of Tricia applications

Te
m

p
la

te

In
st

an
ce

Figure 4.4.: A template for the exemplary type Employee in the template’s view mode as
well as an exemplary instance.

63

4. Towards Living KPIs

Figure 2.3. Hence, the adaption of the model to an organization-specific context con-
sists of renaming and deleting unnecessary model elements, whereas the MxL 2.0
implementation ensures the consistency of expressions referring to these elements.

EAM KPI descriptions The whole content of the EAM KPI Catalog [13] has to be pro-
vided by the Living KPIs, including all the EAM goals, EA layers, as well as the KPI
descriptions with their general structure elements as well as organization-specific
structure elements.

Templates Not only the EAM KPI Catalog’s content, but also its structure has to be im-
plemented in the Living KPIs. Hence, the deployment of the Living KPIs also has to
include type-based templates and CSS classes.

KPIs formally expressed by MxL 2.0 All the catalog’s KPIs have to be implemented as
proper MxL 2.0 expressions in order to analyze the KPI’s dependencies on the one
hand, and to support a tool-supported computation on the other hand. For the sake
of reusability, all the KPIs are implemented as custom functions, so that they are
evaluable by invoking the proper function.

Furthermore, the deployment of the Living KPIs has to ensure the possibility of back track-
ing the changes of the information model in order to retain a relation between the original
information model and the adapted one. This allows an analysis of organization-specific
adaptions and eventual recurring adaption patterns on the one hand, and the distribution
of updates of the catalog on the other hand.
Since a hard-coded approach for the definition of the mentioned artifacts is inflexible and
unintuitive, the artifacts, which have to be deployed with the Living KPIs, have to be de-
finable by a descriptive repository, e.g., a text-based file (XML, JSON, ...).

4.2.1. Existing import types

Tricia already supports some mechanism to import data from various data sources, i.a., the
following:

Relational data bases By a comprehensive description of how the tables and relations of
the relational database management system (RDBMS) have to be mapped to Tricia,
this import type allows the import of data of arbitrary SQL-based RDMBSs. How-
ever, this import type supports neither the import of MxL 2.0 expressions as custom
functions, nor the import of type-based templates.

MS Excel Any existing space can be exported and subsequently imported as a MS Excel
file. Again, this import type supports neither the import of MxL 2.0 expressions as
custom functions, nor the import of type-based templates. Moreover, the export and
import includes only the space’s pages, whereas its schema objects (type definitions
and property definitions) are omitted, wherefore this import type is not appropriate
for the deployment of the Living KPIs.

ZIP-archive Any existing space can be exported as a ZIP-archive containing a XML file de-
scribing the exported data as well as eventual documents uploaded to Tricia, which

64

4.2. Deployment of Tricia applications

config/initial-data

<space folder>
*

<any sub-directory>
*

space.yml
1

types<any suffix>.yml
*

pages<any suffix>.yml
*

mxl<any suffix>.yml

files<any suffix>.yml

<any content file>

*

*

*

*

1

1

1

Figure 4.5.: The folder structure of the config/initial-data directory.

subsequently can be imported by a proper environment provided by Tricia. Again,
this import type supports neither the import of MxL 2.0 expressions as custom func-
tions, nor the import of type-based templates. Moreover, although the definition of a
rather big amount of data in a single XML file is a descriptive way of defining data,
it yields to a very inflexible, inflated, and confusing XML construct.

In addition to the mentioned weaknesses of these import types, none of them fulfills the
requirement of back tracking changes of the information model.

4.2.2. Initial data definition

Because of the weaknesses of existing import mechanisms, the implementation and de-
ployment of the Living KPIs requires another approach, focusing on the definition of
data, which has to be initially available on the deployment of the tool. The language
used for the descriptive definition of the initial data is YAML, which is a human-readable
data serialization language [36]. These files are accessed via the Java-based YAML parser
snakeyaml [37], whereas each file is translated to an eventually nested map.
A Tricia application consists of a config directory containing various configurations, e.g.,
accessibility of the Tricia web application or configuration of the integrated search engine.
The initial data has to be defined in its sub-directory initial-data, whereas its folder struc-
ture has to be as depicted in Figure 4.5. The space folders contain both descriptive files
(YAML-files) as well as content files (e.g., HTML files defining page templates, CSS files,
pictures), whereas these files may be located in arbitrarily named and arbitrarily nested
sub-directories.

65

4. Towards Living KPIs

While the content files do not have to follow a certain naming convention, the name of
descriptive files has to have a predefined prefix, which determines the purpose of the file.

space.yml file

In contrast to other descriptive files, there has to be just one YAML file with a ”space”
prefix.
The space file defines both the homepage of the space and the appearance of the space itself
(e.g., if the space’s types should be shown in the Tricia’s navigation).

types*.yml files

The types files define the type definitions as well as the property definitions, which have to
be created on the initialization of Tricia. The top-level attributes are the names of the types,
whereas the uniqueness of the keys of a map ensures the uniqueness of the type names
of a space. The possible attributes of a type are id, template (or templatefile referring to a
content file containing the template), css (or cssfile referring to a content file containing the
CSS classes), and some attributes defining the appearance of the type’s instances (hideFiles,
hideTags, showHybridTable, hideRefBy). If there is no explicit id attribute, the type’s ID is
inferred by its name by removing all the name’s special characters and turning all upper
case letters to lower case letters. If a type does not have any attributes, it can be defined as
<typename>:
Moreover, a type can also contain the attribute properties defining any number of property
definitions, which have to be assigned to the type. The syntax of each property definition
has to be <name>: <type><multiplicity><type properties>. A property’s type has to be one
of Text, Number, Bool, Date, Link, Enum, LongText, or Image. The multiplicities are encoded
by certain special characters, i.e., the exclamation mark (!) for exactly one, question mark
(?) for maximal one, plus (+) for at least one, and the asterisk (*) for any number of values. The
type property can be used for the Link type in order to determine the type of instances the
defined relation may refer to, or for the Enum type to define the enumeration’s elements.
For example, the information model depicted in Figure 3.3 can be defined as follows:

Employee:
id: employee
templatefile: templates/employee.htm
cssfile: templates/employee.css
properties:

First name: Text !
Last name: Text !
Picture: Image !
Salary: Number !
Hours: Number !
Location: Link ! Department

Department: _

Project:
properties:

Member: Link + Employee

66

4.2. Deployment of Tricia applications

In this example, the implicit ID of type Department will be ”department”, whereas the ID
of type Project will be ”project”.
Furthermore, the type Employee refers to a template file as well as a CSS file defining the
type-based page template. These paths are space relative, i.e., inside the space directory
there has to be a subfolder named ”templates”, which has to contain the two files ”em-
ployee.htm” and ”employee.css”.

pages*.yml files

While types files define the information model’s schema, the pages files are defining its
instances. However, in contrast to types, the top-level attributes of pages files are a combi-
nation of the page’s type and its name, whereas the syntax is <type>(<name>).
The attributes of a page may be id (if not explicitly determined, it will be derived from the
page’s name), parent (referring to a parent page by its ID), content (or contentfile referring
to a content file containing the page’s richtext content), and some attributes defining the
appearance of the page (hideFiles, hideTags, showHybridTable, hideRefBy).
Moreover, the page may have an attribute properties for the instantiation of the properties
defined by the corresponding type definition. For example, the definition of initial pages
for the previously defined types may be as follows:
Department(Dev Team): _

Employee(Thomas Reschenhofer):
content: This is me
properties:

Last name: Reschenhofer
First name: Thomas
Picture: picturereschenhofer
Salary: 20
Hours: 300
Location: devteam

Project(Master thesis):
properties:

Member:
- thomasreschenhofer

As shown by this example, the instantiation of references is done by the target page’s ID,
whereas the IDs of all these pages are implicitly inferred by the corresponding page names.

mxl*.yml files

The mxl files are defining both derived attributes and custom functions. Similar to pages,
the top-level attributes of these files are a combination of the owner type and the name of
the derived attribute or custom function, whereas the syntax is again <type>(<name>).
Both derived attributes and custom functions may define an explicit id and a description, as
well as a numerical order attribute to control the order of checking the type of these MxL
providers. The order attribute is necessary, since a MxL provider A may refer to another
MxL provider B, wherefore MxL provider B’s type has to be checked first.
If the MxL provider is a derived property definition, it contains an attribute derive contain-
ing a MxL expression. Otherwise, if the MxL provider is a custom function, it has to have

67

4. Towards Living KPIs

the attribute method defining the method stub of the function. Moreover, custom functions
may also contain a parameters attribute defining the function’s parameters.
For example, the following mxl file defines the derived attribute Costs from Figure 3.13 as
well as the custom function projectsAsHtmlList as mentioned in the previous section:
Employee(Costs):

id: employeecosts
derive: |

Salary * Hours

Employee(projectsAsHtmlList):
description: Generates a HTML list of all projects assigned to the employee
id: projectsashtmllist
method: |

"" +
get Project whereis Member
.select(p => "" + p + "")
.aggregate((a,b) => a + b, "") + ""

For the definition of static functions the pseudo type STATIC is used, e.g., STATIC(doSomething).
Furthermore, as shown in this example, the pipe (|) can be used to define a MxL expression
over several lines.

files*.yml files

The files files are uploading referred files to Tricia. Again, the top-level attributes are a
combination of two attributes. However, this time the first part is a reference to the parent
page of the uploading document (by the page’s ID), whereas the second part defines the
document’s name. To define the space’s homepage as a document’s parent, the token home
can be used as the parent page’s ID.
The only additional attributes are id and a space directory relative path, which refers to an
arbitrary file, which has to be uploaded to Tricia.
For example, the following files file uploads a picture to the space’s homepage as well as a
PDF to one of the previously defined pages:
_home(reschenhofer.jpg):

id: picturereschenhofer
path: pictures/reschenhofer.png

thomasreschenhofer(CurriculumVitae.pdf):
id: cvreschenhofer
path: files/cv.pdf

4.2.3. Initial data processing

Since some assets defined for the creation on the initialization of Tricia may depend on
each other, the order of their initialization is relevant.
The initialization process, which is depicted in Figure 4.6, consists of the following steps:

1. For each folder contained in the config/initial-data directory, Tricia checks for the ex-
istence of a space which is named as the corresponding folder. If yes, the process
continues with the next space folder. Otherwise Tricia will create a space with the

68

4.2. Deployment of Tricia applications

Ensure
space

Create
types

[No more spaces to initialize]

[otherwise]

Create
pages

Create
files

Create MxL
providers

Set page
templates

Initialize page contents and
properties

Configure
homepage

Create
properties

pass page templates

pass property values

Figure 4.6.: UML activity diagram [17] depicting the process of initializing the data as de-
fined by the content of the initial-data directory.

folder’s name (its ID is inferred by the name) and continues with the initialization of
the space.

2. Tricia searches for types files in the space folder and all its sub-folders, and collects
all defined types and their property definitions. However, since the property defini-
tions may define relations to other types, Tricia first creates all types before adding
their property definitions. Moreover, the page templates are not yet created, since
they may contain an embedded expression referring to other MxL assets (properties,
functions).

3. Subsequently, the property definitions are created as defined in the types files, which
were obtained in Step 2.

4. Tricia searches for pages files in the space folder and all its sub-folders and collects
all defined pages as well as their their content and properties. However, since pages
may refer to other pages, and because the rich-text content of a page may contain
an embedded expression, the pages are created without initializing their content and
properties.

5. Tricia searches for files files in the space folder and all its sub-folders, and collects all
defined files, uploads them, and attaches them to the defined parent pages.

6. Tricia searches for mxl files in the space folder and all its sub-folders, and collects
all defined derived attributes and custom functions, and creates them in the order
specified by the order attribute.

7. Since, all MxL assets are created, the page templates collected in Step 2 are applied
to the corresponding types

69

4. Towards Living KPIs

8. Subsequently, all page contents and properties are initialized with the data obtained
in Step 4

9. Finally, the homepage is configured according to the homepage attribute in the space
file.

4.2.4. Back tracking of changes on initial data sets

The implemented deployment mechanism ensures the creation of all assets by a predefined
ID, which is either explicitly defined or implicitly inferred (e.g., by the asset’s name).
Hence, because of the immutability of an ID, an asset is always identifiable, even if it was
renamed or its content has changed. This feature enables, i.a., the following actions:

Initial data update If the initial data sets are updated after initializing Tricia, the changes
can be propagated to the existing data sets by their ID.

Data reset All the data created on the initialization of Tricia can be reseted to its initial
state, while all the data created afterwards remains the same.

Change analysis The deviations of an actual data set from the initial data set can be an-
alyzed in order to optimize the initial data set. For example, if there is a recurrent
renaming of a certain asset, it can be renamed in the initial data definition.

4.3. Prototype of the Living KPIs

While Section 2.4 exposed the shortcomings of the foundations of the thesis, the develop-
ment of MxL 2.0, as well as the implementation of both a type-based template engine and
a flexible deployment mechanism rectified the mentioned issues:

• MxL 2.0 supports compile-time analysis of expressions

• MxL 2.0 is decoupled from Tricia and hence integratable in other tools by implement-
ing a proper MxL Connector

• Tricia now supports the definition of type-based page templates to centralize the
definition of the layout and design of a type’s instances

• Tricia now provides a mechanism to intuitively and descriptively define data, which
has to be created on Tricia’s initialization, including the information model’s schema
and instance data, as well as MxL providers like custom functions and derived at-
tributes.

Hence, by the work done in this thesis, a first prototype of the Living KPIs can be imple-
mented.

70

4.3. Prototype of the Living KPIs

Types Basic Functions Property Definitions

Custom MxL Function

STATIC::applicationContinuityPlanAvailabilityKPI

Name applicationContinuityPlanAvailabilityKPI

Description A measure of how completely IT continuity plans for business critical applications have

been drawn & tested up for the IT‘s application portfolio

Parameters

Return Type Number

Method Stub /* Determine all critical applications */

let criticalApplications =

 find('Business Application').where('Is critical') in

/* Calculate proportion of covered critical applications */

criticalApplications.ratio('Covering continuity plan' <> null)

Outgoing MxL References

Sequence::ratio Business Application::Covering

continuity plan
Sequence::where

Business Application::Is critical

Business Application

Figure 4.7.: The implementation of the EAM KPI depicted in Figure 2.1 as a MxL 2.0 custom
function (c.f. Figure 2.10).

4.3.1. Implementation of KPIs as MxL 2.0 custom functions

As stated in Subsection 2.3.2, MxL 1.0 was already able to define the catalog’s KPIs, as
stated by Monahov et al. [15]. For example, the definition of the first KPI of the catalog as
a MxL 1.0 custom function is depicted in Figure 2.10.
However, because of MxL 1.0’s shortcomings mentioned in Section 2.4, MxL 2.0 was de-
veloped and prototypically integrated in Tricia. All the KPIs of the EAM KPI Catalog are
implemented as MxL 2.0 custom functions (e.g., Figure 4.7 shows the definition of the pre-
viously mentioned KPI Application continuity plan availability), allowing the analysis of the
expressions representing the formal computation prescriptions of the corresponding KPIs.
Hence, the MxL type checker determines all information model elements the expression
refers to via an identifier, and lists them as ”Outgoing MxL References” below the func-
tion’s definition.

71

4. Towards Living KPIs

4.3.2. Page template for EAM KPI descriptions

In addition to all the types of the EAM KPI Catalog’s integrated information model de-
picted in Figure 2.3, the Living KPIs prototype provides the type EAM KPI Description,
whereas this type’s instances represent the catalog’s KPIs.
The attributes of the EAM KPI Description type are both the general general structure el-
ements (c.f. Subsection 2.1.1) and organization-specific structure elements (c.f. Subsec-
tion 2.1.2). Moreover, this type provides an additional attribute Function referring to the
custom function defining the KPI’s formal computation prescription.
However, as stated in Subsection 2.1.2, each KPIs also possesses a mapping table link-
ing the catalog’s information model elements to organization-specific concepts. Since this
table’s structure strongly depends on the KPI’s definition, and Tricia does not provide a
complex property type allowing the definition of a table structure, the mapping has to be
defined unstructured, i.e., as rich-text content. Therefore, the mapping table has to be de-
fined for each KPI separately, while the page template defines its position on the page.
To ensure a consistent and uniform layout and design of the EAM KPI Description’s in-
stances, a page template is defined 4.8, whereas its layout is deduced from the traditional
EAM KPI Catalog’s layout and design. This template is applied on each of the type’s
instances. Hence, by simply instantiating the KPI description’s properties as well as its
mapping table, its layout is as depicted in Figure 4.9.
Due to the definition of the layout as a type-based page template, any changes of the
EAM KPI structure (e.g., organization-specific adaptions) are easily propagatable to all
instances.

4.3.3. EAM KPI Catalog data

In order to deploy the Living KPIs, the mechanism introduced in Section 4.2 is used create
all the catalog’s data on the initialization of Tricia.
For this purpose, a new so-called Tricia App with name ”LivingKPIs” was created in order
to build upon the basic functionality of Tricia. However, the only extension of this Tricia
App is the definition of Tricia’s initial data sets as described in Section 4.2. Therefore, in
the initial-data folder of the Tricia App’s config directory a space folder named ”EAM KPI
Catalog” is defined, whereas its directory structure is depicted in Figure 4.10. The elements
of the space folder are:

space.yml Defines the appearance of the space’s homepage by showing a table of all EAM
KPI Descriptions in the homepage’s rich-text content, whereas the content’s HTML
markup is defined in the file ”homepage.htm”.

types catalog.yml This is the definition of the EAM KPI Catalog’s integrated data model.

mxl kpis.yml In this descriptive file, all the catalog’s KPIs are defined as MxL 2.0 custom
functions

kpidescription This folder contains the definition of the types EAM KPI Description (as de-
scribed in the previous subsection), Goal, and Layer (in ”types kpidescription.yml”),
as well as the definition of all KPIs (in ”pages kpidescription.yml”), EAM goals

72

4.3. Prototype of the Living KPIs

Organization-specific mapping of the predefined information model elements

Organization-specific instantiation

KPI property Property value

Sort ▼

Name of property ‚Description‘

Value of property ‚Description‘

Name of property ‚EA information model‘

Value of property ‚EA information model‘

Value of property ‚Description‘

Name of property ‚Frequency of Measurement‘ Value of property ‚Frequency of Measurement‘

Name of property ‚Interpretation‘ Value of property ‚Interpretation‘

Name of property ‚KPI consumer‘ Value of property ‚KPI consumer‘

Name of property ‚Owner‘ Value of property ‚Owner‘

Name of property ‚Target Value‘ Value of property ‚Target Value‘

Name of property ‚Planned values‘ Value of property ‚Planned Values‘

Name of property ‚Tolerance values‘ Value of property ‚Tolerance Values‘

Name of property ‚Escalation rules‘ Value of property ‚Escalation rules‘

Name of property ‚Goal‘

Value of property ‚Goal‘

Name of property ‚Calculation‘

Value of property ‚Calculation‘

Name of property ‚Function‘

Value of property ‚Function‘

Name of property ‚Code‘

Value of property ‚Code‘

Name of property ‚Source‘

Value of property ‚Source‘

Name of property ‚Category‘

Value of property ‚Category‘

Name of property ‚Layer‘

Value of property ‚Layer‘

Figure 4.8.: The prototypical page template for the type EAM KPI Description, whose layout
and design is deduced from the layout of the traditional EAM KPI Catalog.

and EA layers (in ”pages goalsandlayers.yml”) of the EAM KPI Catalog. More-
over, the subfolder ”templates” contains the page template for the EAM KPI Descrip-
tion type, while the other sub-folders are containing the mapping tables as well as
the information models for each of the catalog’s KPIs, whose upload is defined by
”files kpimodels.yml”.

testdata For testing purposes, this folder contains exemplary instances for all the types of
the catalog’s integrated information model.

Therefore, by starting the Living KPIs prototype, Tricia is initialized with all the EAM KPI
Catalog’s data and structure.

73

4. Towards Living KPIs

Description

A measure of how completely IT continuity plans for business critical applications have been drawn & tested up for the IT‘s application portfolio.

EA information model Goal

Organization-specific mapping of the predefined information model elements

Improve capability provision

Increase disaster tolerance

Calculation

The number of critical applications where

tested IT continuity plan available divided

by the total number of critical applications.

Function

applicationContinuityPlanAvailabilityKPI

Code

EAM-KPI-0001

Source

Sebis project CobiT 4.0

Category

Sebis

Layer

Business Services

Infrastructure Services

Model element name Mapped name Contacts Data sources

Business application Business Application

isCritical Is critical

IT continuity plan IT Continuity Plan

isTested Is tested

Covered by Covering continuity plan

Sort ▼

Organization-specific instantiation

KPI property Property value

Frequency of measurement Quaterly

Interpretation

Good if > 80%

Normal if 60% - 80%

Problematic if < 6ß%

KPI consumer

Owner

Target value 80% in 2014

Planned values
70% in 2012

75% in 2013

Tolerance values

Escalation rules

Sort ▼

Figure 4.9.: The first KPI of the EAM KPI Catalog, implemented in the Living KPIs. The
layout is based on the prototypical template in Figure 4.8, yielding to an ap-
pearance similar to the one of the traditional catalog (c.f. Figure 2.1).

74

4.3. Prototype of the Living KPIs

config/initial-data

EAM KPI Catalog

space.yml types_catalog.yml mxl_kpis.yml homepage.htm

kpidescription

content

eamkpi0001.htm

…

models

eamkpi0001.png

…

templates

eamkpidescription.htm

eamkpidescription.css

types_kpidescription.yml pages_kpidescription.yml

pages_goalsandlayers.yml files_kpimodels.yml

testdata

pages_Action Plan.yml

…

pages_User.yml

…

Figure 4.10.: The folder structure of the config/initial-data directory defining the Living
KPI’s initial data.

75

4. Towards Living KPIs

76

Part III.

Results

77

5. Summary & Conclusion

Chapters 3 and 4 are extensively describing the contribution of this thesis, consisting of the
re-engineering of MxL 1.0’s successor – MxL 2.0 – as well as the implementation of both a
type-based template engine and a deployment mechanism in Tricia.
This chapter, summarizes (Section 5.1) and concludes (Section 5.2) the work done by this
thesis.

5.1. Summary

As motivated in Chapter 1, KPIs are an important tool to monitor, measure, and evaluate
certain performance-related EA characteristics and to measure the degree of achievement
of given EAM goals. Due to the lack of practice-proven KPIs, Matthes et al. [13] gathered
52 KPIs from literature and industry partners for the development of the EAM KPI Cat-
alog. Based on this catalog, Monahov et al. [15] designed the language MxL 1.0 for the
formal computation prescription of the KPIs, enabling a tool-supported evaluation of the
defined KPIs.
However, as stated in Section 1.3, the goal of the thesis is the prototypical implementation
of an integrated and adaptable EAM platform based on the EAM KPI Catalog. However,
Chapter 2 reveals some shortcomings of existing foundations, namely MxL 1.0’s missing
support for compile-time analysis, and the lack of both a type-based template engine and
a proper deployment mechanism in Tricia. Moreover, MxL 1.0 is very tightly coupled to
Tricia, ruling out the integration of MxL 1.0 in other tools.
To address MxL’s issues, Chapter 3 covers the development of MxL 2.0 and its implemen-
tation in Tricia. In contrast to MxL 1.0, MxL 2.0 is type safe, i.e., a type checker analysis
an expression at compile-time and checks, if all the expression’s identifiers are referring to
existing assets (c.f. Subsection 3.1.5). By interpreting an EA as a dynamic system, MxL 2.0
expression allow the formalization and analysis of dependencies of system components.
Moreover, MxL 2.0 was decoupled from Tricia. It provides a connector component as inter-
face between MxL 2.0 and the implementing system, so that MxL 2.0 is easily integratable
in any tool.
On of the subjects of Chapter 4 is the extension of Tricia by a type-based template engine.
While Tricia in its original state already provided a template-engine, it was not possible to
define type-specific layouts, but just one common page layout. Hence, the implemented
type-based template engine allows the definition of a page template for each type, whereas
this layout is applied onto each of the type’s instances. Furthermore, Section 4.2 covers the
implementation of a mechanism to deploy the EAM KPI Catalog’s data and structure in
an intuitive and descriptive way. This allows the definition of the data, which has to be
created on Tricia’s initialization, in a human-readable notation, so that the Living KPI pro-
totype’s data is flexible and easily adaptable to eventual changes of the EAM KPI Catalog.

79

5. Summary & Conclusion

applicationContinuityPlanAvailabilityKPI

/* Determine all critical applications */
let criticalApplications =
 find('Business Application').where('Is critical') in

/* Calculate proportion of covered critical applications */
criticalApplications.ratio(‘Covering continuity plan' <> null)

applicationContinuityPlanAvailabilityKPI

/* Determine all critical applications */
let criticalApplications =
 find('Business Application').where('Is critical') in

/* Calculate proportion of covered critical applications */
criticalApplications.ratio(‘Continuity plan' <> null)

Renaming property definition
„Covering continuity plan“ to „Continuity plan“

Figure 5.1.: Automated update of all MxL 2.0 expressions containing identifiers referring
to an asset, which is renamed. In this example, the custom function application-
ContinuityPlanAvailabilityKPI contains the identifier ’Covering continuity plan’
referring to a corresponding property definition. By renaming the property
definition, the custom function’s expression is automatically updated

Finally, Section 4.3 describes the implementation of the Living KPIs, enabled by this thesis’
contribution, i.e., by using MxL 2.0 to formally define the EAM KPI Catalog’s KPIs, defin-
ing a page template for the EAM KPI descriptions, and defining all the catalog’s data and
structure as initial data, which has to be loaded on the initialization of the Living KPIs.

5.2. Conclusion

As motivated in Section 1.3, the goal of the thesis is an integrated and easily adaptable
EAM platform based on the EAM KPI Catalog. The approach of the thesis is the prototypi-
cal implementation of such a platform in Tricia and by using the domain-specific language
MxL 2.0, whose compile-time analysis capability enables the retention of the platform’s
consistency on changes of the information model.
Not only the EAM KPI Catalog’s data and structure is initially available in the Living KPIs,
but also a MxL 2.0 custom function as the formal computation prescriptions of each KPI.
Most of them are static functions, i.e., they are listed in the ”Static Functions” view of the
EAM KPI Catalog workspace, whereas other functions (e.g., projectsEmployeeAndContrac-
torMixKPI, representing the 6th KPI of the catalog) have an owner type (e.g., Project), and
hence are listed in the ”Functions” view of the corresponding type.
As previously mentioned, the adaptability of the platform is provided by MxL 2.0, i.e., the
identifiers of a MxL 2.0 expression are linked to the assets they are referring to. Hence, if
any asset (e.g., type, attribute, function) is renamed or deleted, all MxL providers (func-
tions, derived attributes, and embedded expressions) are notified, so that the expression
containing the referring identifier can either be updated or deleted.
For example, as shown in Figure 4.7, the custom function applicationContinuityPlanAvail-
abilityKPI has an outgoing reference to the property definition Covering continuity plan of
type Business Application. By clicking onto this property definition and observing its in-
coming MxL references, it can be observed that there is another function also referring
to this property definition. If the property definition is renamed, the expressions of all

80

5.2. Conclusion

MxL providers referring to this property definition are updated (e.g., the identifier in ap-
plicationContinuityPlanAvailabilityKPI’s method stub is updated to the property definition’s
new name, c.f. Figure 5.1).
Similarly, assets can also be deleted, whereas there are two options to handle incoming
MxL references to a deleting asset. The first option is the triggering of a Cascades Delete,
i.e., all MxL providers referring to the deleting asset should also be deleted yielding also
to the deletion of all MxL providers, which transitively refer to the deleting asset. The sec-
ond option is to omit the deletion of MxL providers referring to the deleting asset, whereas
these MxL providers are becoming inconsistent.
Therefore, by renaming and deleting the Living KPI platform’s initial information model
elements, it can be adapted to organization-specific needs, without violating the integrity
of the Living KPIs. However, by the IDs of the assets, an adapted Living KPIs prototype
is always resettable to its initial state on the one hand, and updates on the EAM KPI Cata-
log’s structure are easily propagatable to adapted versions of the Living KPIs on the other
hand.
Therefore, the Living KPIs are fulfilling the requirements examined in Section 1.3, since
being an integrated and adaptable EAM platform based on the EAM KPI Catalog.

81

5. Summary & Conclusion

82

6. Outlook & Future research

Although the current state of the Living Catalog already is a flexible and adaptable EAM
platform, there are still some open issues, whereas most of them are related to MxL and
the processing of its expressions.
This chapter will point out these issues, which can be be subject in future research. More-
over, the following sections are proposing possible solutions to tackle the mentioned is-
sues.

6.1. Authorization in MxL 2.0

For multi-user application, authorization is a prevalent security requirement for specifying
the access rights to resources [38].
For example, Tricia implements an authorization mechanism allowing to specify, which
user or group can read (permits read-only access), write (permits write access; implies read),
or administrate (permits change of access rules, implies write) a page, document, or space.
The authorization model of Tricia is depicted in Figure 6.1.

6.1.1. Problem / Open issue

While the access to Tricia’s information objects is controllable, the access to MxL functions
is not. Hence, each user is allowed to call each MxL function without any restriction, i.e.,
it is not possible to define functions, which are just invokable by a certain group of users
(e.g., a KPI only evaluable by a certain manager).
However, since the MxL’s access to the information model is built upon the authorization
model of the information objects, the authorization rules defined on information objects
are also applied when accessing them via a MxL expression. The issue regarding an ex-
ecutor’s identity is also considered in Section 6.2.

6.1.2. Proposed solution

The lack of an authorization mechanism for MxL functions can be tackled by applying
the authorization model for information objects on MxL functions, whereas the three per-
mission levels read, write, and administrate would have a slightly different meaning for
functions:

read A function’s reader is allowed to invoke the function, but also to access the func-
tion’s definition. However, the reader is now allowed to change the function’s name,
description, parameters, or method stub.

83

6. Outlook & Future research

Principal

Person Group Space/Page/Document

Membership

members

readers

administrators

writers

* *

*

*

*

* * *

Figure 6.1.: The conceptual authorization model of Tricia.

write A function’s writer is allowed to invoke and read the function, and also to change
the function’s name, description, parameters, and method stub. In fact, in Tricia’s
current state, each user is implicitly writer of each function.

administrate A function’s administrator is a writer of the function, but additionally man-
ages the function’s access rights.

While all these access rights apply on existing functions, the authorization rule allowing
users to create new functions, has to be defined on another object. For example, a space
may contain a role MxL creators referring to all users allowed to create both static functions
in this space and to create functions for types of this space. Alternatively, the MxL creators
may be defined for each type definitions to control the creation of MxL functions for each
type separately.

6.2. Evaluating identity

As already mentioned in Section 6.1, MxL builds upon the authorization mechanism of
Tricia, so that the authorization rules defined on information objects are also applied when
accessing them via a MxL expressions. Furthermore, a MxL provider (functions, derived
attributes, and objects containing embedded expressions) is always executed under the
executor’s identity.

6.2.1. Problem / Open issue

If a MxL expression defines the query of an underlying information model, the executing
user’s identity is used to access the information objects. However, this implies that a MxL
Provider defining a query may return different results for different users.
While this might by useful for some scenarios (e.g., to define user-specific views), the def-
inition and evaluation of KPIs requires another approach, since they have to return the
same value for each user.
Furthermore, a use case, in which users should not have access to individual data objects

84

6.3. Evaluation strategy

of a certain data set, while consolidations and aggregations of the data set have to be ac-
cessible, is not implementable with the current approach of evaluating MxL expression.

6.2.2. Proposed solution

While the execution of a MxL provider’s expression under the executor’s identity is useful
for the definition of user-specific queries, there is a need for other approaches (e.g., evalu-
ation of KPIs).
Conceivable approaches for the selection of an identity, under which a MxL provider is
executed, are:

Executor of the function/derived attribute This is the current approach, using the ex-
ecutor’s identity to perform the expression’s actions.

Definer of the function/derived attribute The execution of a function or derived attribute
under its creator’s identity is a prevalent approach to execute a process (e.g., a work-
flow) under a common identity.

Specified user identity The creator of a function or derived attribute can specify an user,
under whose identity the MxL provider is executed.

System identity There may be a certain system identity, under which MxL providers are
executed. For example, this identity might be the web application’s process identity.

All these approaches are practice-proven and used in several platforms, e.g., in Microsoft
SharePoint 20101 workflows [39].
Since there are use cases for the current as well as the mentioned alternative approaches,
an optimal solution would be to allow the selection of the current approach and at least
one of the other ones. This would enable the definition of both user-specific and user-
independent MxL providers.

6.3. Evaluation strategy

In this context, an evaluation strategy refers to the time a MxL expression is evaluated.
Currently, each expression is evaluated on demand, i.e., each time a function or derived
attribute is invoked, its expression is reevaluated.

6.3.1. Problem / Open issue

While the current approach is unproblematic for trivial expressions, extensive queries af-
fecting lots of information objects as well as complex processing of the data may lead to
exorbitant evaluation durations. This is especially painful, if the result of the expression’s
evaluation has not changed compared to the previous one.
While this problem will occur especially when querying large data sets, it is not solely tied
to query expressions, but to low performance expressions in general. The optimization of
queries will be discussed later on in Section 6.6.

1http://office.microsoft.com/en-us/sharepoint

85

http://office.microsoft.com/en-us/sharepoint

6. Outlook & Future research

Custom Function MxL Execution Schedule

schedule

0..1

Interval : TimeSpan

First execution : DateTime

Context : ExecutionContext
Derived Attributes

MxL Execution Value

Value : Object

Execution time: DateTime

Duration: TimeSpan

values

*

1

1

1

Figure 6.2.: A proposed architecture for the scheduling evaluation strategy for custom
functions and derived attributes.

6.3.2. Proposed solution

While an optimization of an expression might enhance its evaluation performance, this is
not feasible in general. Hence, the only way to enhance an arbitrary expression’s evalu-
ation performance is the selection of a proper evaluation strategy, whereas the following
lists contains four possible approaches:

On demand This is the current approach for all MxL expressions, i.e., each time a function
or derived attribute is invoked, its expression is evaluated.

Cached The most obvious evaluation strategy for optimizing an expression’s evaluation
performance is caching (temporary storing) an expression’s result for future requests.
For example, on the definition of a custom function, the creator could determine the
function’s cache lifetime. Hence, if the function is invoked, its result is cached for the
specified duration and not reevaluated until the cache expires.

Scheduled In contrast to the caching approach, this evaluation strategy ensures the reg-
ular evaluation of an expression based on a configurable schedule, while in the
caching evaluation strategy an expired cache yields to an on-demand evaluation.
Furthermore, storing the values obtained by each scheduled evaluation allows easy
access to the expression’s history, which will be subject in Section 6.4.
A conceptional architecture for the implementation of the scheduling might consist
of an execution schedule, which is linked to either a custom function or derived at-
tribute, whereas the schedule could be configured by the creator of the MxL provider
(c.f. Figure 6.2). Moreover, an execution value represents a value evaluated accord-
ing to the related schedule. Hence, if a function has to be evaluated, it determines
and returns the latest execution value of the related schedule instead of reevaluating
the function’s method stub.
However, the execution schedule has to consider the execution context of the func-
tion, i.e., its execution identity (as mentioned in Section 6.2), the object, on which the
function is invoked (for non-static functions), and the function’s parameters.

On change While in the on-demand evaluation strategy, the incentive for an expression’s
reevaluation comes from its executor (e.g., an user), in the on-change the reevalua-
tion is caused by the information model the expression is based on (as illustrated in
Figure 6.3). Hence, if a data set is updated, each query expression referring to these
data set is reevaluated.
While all previously mentioned evaluation strategies are rather simple implementable,

86

6.4. History of evaluation results

Query expression

on demand on change

Figure 6.3.: Illustration of the evaluation strategies On demand and On change.

this one requires an exhaustive analysis of MxL expressions and their relation to the
information model. However, since MxL 2.0 supports a compile-time analysis, the
on-change evaluation strategy can be implementable in Tricia.

6.4. History of evaluation results

One of the most important activities in EAM is the analysis of the EA’s evolution [2]. For
this purpose, it might be helpful to look at a KPI’s evolution and, for example, make pre-
dictions regarding the KPI’s future trend.
Since versioning is an important concept in information systems in general, Tricia already
manages versions for its pages and documents, which includes functions for comparing
two versions and restoring previous versions.

6.4.1. Problem / Open issue

While the evolution of the information model’s data itself is potentially accessible through
Tricia’s versioning feature, MxL 2.0 is not able to access the information model’s version
history.
However, accessing the information model’s version history would allow the definition of
functions over the time representing a KPI’s evolution over a certain time period. More-
over, a visualization of a KPI’s evolution as a time series diagram would illustrate the KPI’s
trend in a human-readable manner (visualizations are also subject in Section 6.5).

6.4.2. Proposed solution

Basically there are two ways of gathering a MxL expression result’s evolution over time,
namely either

• by managing the history of the expression’s evaluated values, or

• by accessing the information model’s history.

Assuming the availability of the previously mentioned scheduling evaluation strategy (c.f.
Section 6.3), a hybrid approach would be a possible solution for the mentioned issue, as
described in the following.
In a hybrid approach, scheduled functions and derived attributes are storing their eval-
uated values anyway, wherefore they are managing the evaluation value’s history. For

87

6. Outlook & Future research

Custom Functions

Custom MxL Function

STATIC::applicationContinuityPlanAvailabilityKPIByDate

Name applicationContinuityPlanAvailabilityKPIByTime

Description Evaluates the KPI ‚Application continuity Plan availability‘ at the given date

Parameters evalDate : Date

Return Type Number

Method Stub /* Use of the get-at construct */

get applicationContinuityPlanAvailabilityKPI() at evalDate

Outgoing MxL References

STATIC::applicationContinuityPlanAvailabilityKPI

Figure 6.4.: An exemplary function for the evaluation of the KPI from Figure 4.7 at a given
date.

other expressions, MxL 2.0 has to be extended by a construct to access an information ob-
ject’s history, i.e., to obtain an information object’s state at a given time. For example, this
construct might be defined as follows:

get <any expression> a t <any time>

By this construct, each time the expression accesses the information model, MxL 2.0 does
not obtain the current values, but retrieve the information model’s history to obtain the
value at the given time. Hence, the get-at construct allows the definition of functions over
time, e.g., Figure 6.4 defines a function evaluating the KPI function defined in Figure 4.7
at a given time.
However, by providing the history of an expression evaluation value, a new issue arises,
which has to be taken into consideration: What to do on a change of the MxL 2.0 expression
itself? The two solutions are to either keep the values evaluated by the old expression, or
to evaluate the new expression with the old data.

6.5. Visualization of evaluation and type checking results

The visualization is the a human-friendly representation of data (e.g., KPIs), reinforcing
the human’s cognition and supporting the user’s understanding and interpretation of the
information [40].
In the context of EAM, KPIs are often quantitative values ranging from 0 % to 100 %,
whereas this range is divided into a problematic, normal, and good sub range (for exam-
ple, c.f. KPI interpretation in Figure 2.1). Hence, a prevalent visualization for KPIs is the

88

6.5. Visualization of evaluation and type checking results

75

100 8 0 6 0 0

Figure 6.5.: An exemplary visualization of the KPI from Figure 2.1.

traffic light, which is able to visualize the three states of a KPI. An exemplary definition of
a traffic light visualization was already subject in Subsection 3.3.4.
Moreover, since the MxL 2.0 interpreter consists of a type checker, all the MxL assets (types,
attributes, functions, ...) an expression is referring to are obtainable, enabling the deter-
mination of all assets the expression depends on. Therefore, the representation of this
environment as a graph with MxL asset’s as its nodes and the dependencies as its edges
yields to a complex network, whose analysis enables powerful features like the on-change
evaluation strategy mentioned in Section 6.3.

6.5.1. Problem / Open issue

However, while a simple traffic light visualization is implementable by the conditional
rendering of HTML markup (because there are just three different states), more complex
visualizations require another approach. For example, the visualization of a KPI as shown
in Figure 6.5 contains slightly more information (the concrete value of the KPI), so that
this visualization is practically no longer definable by the conditional rendering of HTML
markup, because in this way – even by assuming just natural numbers for the KPI – its
definition would require exactly 100 if-then-else constructs, since there are 101 different
values.
Moreover, as mentioned in Section 6.4, the analysis of an EA’s evolution is one of the main
activities in EAM. For this purpose, a KPIs value and its trend can be visualized as a time
series, which furthermore allows the prediction of future values. However, time series are
not implementable by simple visualizations based on HTML markup.
The same is also true for the visualization of dependency graphs as networks.

6.5.2. Proposed solution

There are already many existing JavaScript libraries for the rendering of a variety of vi-
sualizations (time series, bar charts, pie charts), e.g., Highcharts2, Raphael3, or JavaScript
InfoVis4.
Hence, in order to visualize a MxL expression’s value and its evolution, an interface be-
tween the visualization library and MxL is necessary, so that a MxL expression feeds the
visualization with proper data sets.
For example, to visualize the KPI Application continuity plan availability of Figure 4.7 as a
time series, the chart’s x-axis has to be initialized with a sequence of dates, while the corre-
sponding y-values are computed by a proper MxL function, which takes a single x-value

2http://www.highcharts.com
3http://raphaeljs.com
4http://philogb.github.io/jit

89

http://www.highcharts.com
http://raphaeljs.com
http://philogb.github.io/jit

6. Outlook & Future research

0,5

0,7
0,75

0,85

0,77
0,83

0,9

0,4

0,5

0,6

0,7

0,8

0,9

1

01/12 04/12 07/12 10/12 01/13 04/13 07/13 10/13

Figure 6.6.: An exemplary visualization of the KPI from Figure 2.1 as time series. This
visualization also contains a trend line predicting the KPI’s value for the next
quarter.

as parameter and returns the KPIs value for the given time (such a function’s definition is
shown in Figure 6.4). In this way, a visualization as shown in Figure 6.6 could be definable.
For the definition of network graphs, Tricia has to analyze its MxL assets and the depen-
dencies between them. A proper JavaScript visualization library can be fed with this data
in order to render a network representing the dependencies between MxL functions, at-
tributes, and other MxL assets (similar to the visualization in Figure 3.18).

6.6. Query processing

As already mentioned several times, the definition of queries on an underlying informa-
tion model is one of MxL’s main purposes. In this context, querying means ,i.a., filter-
ing, projecting, sorting, and grouping a sequence of information model elements based on
lambdas defining proper predicates or map functions.

6.6.1. Problem / Open issue

MxL 2.0 does not parse its queries into a language suitable for querying the underlying
information model’s repository (SQL for querying relational data bases), since this parsing
is highly dependent on the underlying repository’s type.
For example, the following query determines all employees with a salary higher then 20:

f ind (Employee)
. where (e => e . Sa lary > 20)

For this query, MxL loads all employees and subsequently iterates through all of them
to check the given predicate. Therefore, the currently implemented query processing is
highly inefficient, since it is completely done in Java.

90

6.7. Fully supported Living KPIs

6.6.2. Proposed solution

If the underlying repository would implement the information model’s types as proper
tables (e.g., ”Employees”) with a proper column for each property (e.g., ”Salary”), this
query would be easily parsable to the following SQL statement:

SELECT * FROM Employee AS e WHERE e . Sa lary > 20

However, while trivial predicates (e.g., Salary >20) are easily parsable to a proper SQL
equivalent, this is not true in general (e.g., if the predicate contains basic function calls).
As mentioned in Subsection 2.3.1, MxL was inspired ,i.a., by Microsoft’s LINQ, which is
a first-class query concept enabling an unified access to a multitude of data sources [21],
i.e., similar to MxL, LINQ is abstracting the querying of an underlying repository. Hence,
LINQ also has to deal with the issue of parsing complex lambdas.
In order to solve this issue, LINQ implements a hybrid approach: All operators, which are
supported by the repository’s query language, are parsed, whereas the others are imple-
mented in LINQ’s implementation language (e.g., C#, VB.NET). A similar approach would
be conceivable for MxL’s query processing.
While this hybrid query processing approach would work for many systems implement-
ing MxL 2.0, Tricia’s Hybrid wiki concept causes another issue: In Tricia, an information
object’s schema is changeable at runtime, which excludes the implementation of the in-
formation model’s types as static tables in a relational database. Hence, all the page’s at-
tribute as defined by an assigned type definition are serialized to a flexible JSON object and
stored in a single repository field, so that it is not queryable by SQL. Hence, the strong de-
pendency of the query processing on the implementing system’s persistence layer makes
it very hard to implement a general query processing mechanism.
However, addressing distributed and efficient data and query processing, the program-
ming model MapReduce enables automatic parallelization and distribution of large-scale
computations [41]. As its name suggests, MapReduce consists of a map function (applied
onto each element of a source data set emitting key-value pairs) and a reduce function
(processes all key-value pairs with the same key), whereas each map and reduce function
is independent from each other and therefore parallely executable (c.f. Figure 6.7).
Based on this MapReduce concept, Sauer et al. [42] introduce a simple generalization of
this model, allowing the reuse of established techniques for the evaluation of queries. The
implementation of this suggested model for MxL 2.0’s query processing would address the
mentioned issue with the Hybrid wiki concept on the one hand, and enable a distributed
processing of queries on the other hand.

6.7. Fully supported Living KPIs

As stated in Section 2.1, our group not only developed a uniform and configurable struc-
ture for the definition and documentation of EAM KPIs [12] as well as a catalog of 52 KPIs
based on this structure [13], but also a design method for defining EAM KPIs [14] (c.f. Fig-
ure 2.4.
Since the Living KPIs prototype meets the requirements listed in Section 1.3, it is able to
support all design steps – from the selection of EAM goals to the configuration of instanti-
ated KPIs.

91

6. Outlook & Future research

input 1

input 2

input 3

input 4

map 1

map 2

map 3

map 4

Worker 1

Worker 2

Worker 3

reduce 1

Worker 4

reduce 2

output 1

output2

Figure 6.7.: An exemplary and simplified job execution in a MapReduce cluster [41, 42],
assuming map 1 and map 3, respectively map 2 and map 4 are emitting key-value
pairs with the same key.

6.7.1. Problem / Open issue

As stated in Subsection 2.1.2, the EAM KPI structure consists, i.a., of organization-specific
structure elements, e.g., the KPIs interpretation (specifying which values of the KPI are
good, normal, or bad), tolerance values, target values, and planned values.
However, all these values are ”lifeless values” of the Living KPIs prototype, i.e., the inter-
pretation of these values (e.g., are target values met, or is the current KPI value good) is
not supported by the Living KPIs prototype and has to be done by the users.
Hence, while the definition and adaption of EAM KPIs is supported by the Living KPIs,
their interpretation is not.

6.7.2. Proposed solution

In order to implement a Living KPIs prototype supporting the definition and configuration
EAM KPIs as well as their interpretation, the EAM KPI descriptions representing the EAM
KPI structure cannot be implemented as an ordinary TypeDefinition, but as a built-in Tricia
entity allowing the implementation of a specific behavior of the KPIs, e.g.:

• Automated adaption of the MxL expression representing the formal computation
prescription when changing the KPI’s mapping table

• Automated interpretation of the KPI’s current value (e.g., as traffic light)

• Automated execution of defined processes in case of the KPI’s escalation

• Tool-supported analysis of the KPI’s evolution considering its planned, tolerance,
and target values.

92

6.7. Fully supported Living KPIs

• Automated evaluation of the KPI according to its measurement frequency (c.f. sched-
uled evaluation strategy in Section 6.3.

• Automated dashboard provision for owners and/or consumers of the KPI

93

Bibliography

[1] Sabine Buckl, Thomas Dierl, Florian Matthes, and Christian M. Schweda. Building
Blocks for Enterprise Architecture Management Solutions. The 2nd Practice-driven Re-
search on Enterprise Transformation, 2010.

[2] Frederik Ahlemann, Eric Stettiner, Marcus Messerschmidt, and Christine Legner.
Strategic Enterprise Architecture Management. Springer-Verlag, 2012.

[3] Florian Matthes, Sabine Buckl, Jana Leitel, and Christian Schweda. Enterprise Ar-
chitecture Management Tool Survey 2008. ISIS Business Integration Special, Nomina
Informations- und Marketing Services, 2008.

[4] Robert A. Handler and Chris Wilson. Magic Quadrant for Enterprise Architecture
Tools. http://imagesrv.gartner.com/media-products/pdf/reprints/
ibm/external/volume4/article28.pdf, 2011.

[5] Sabine Buckl, Alexander M. Ernst, Josef Lankes, and Florian Matthes. Enterprise
Architecture Management Pattern Catalog (Version 1.0, February 2008). Technical
report, Chair for Informatics 19 (sebis), Technische Universität München, Munich,
Germany, 2008.

[6] Sabine M. Buckl. Developing Organization-Specific Enterprise Architecture Management
Functions Using a Method Base. PhD thesis, Fakultät für Informatik, Technische Uni-
versität München, Germany, München, 2011.

[7] Christian M. Schweda. Development of Organization-Specific Enterprise Architecture
Modeling Languages Using Building Blocks. PhD thesis, Fakultät für Informatik, Tech-
nische Universität München, Germany, 2011.

[8] Sabine Buckl, Florian Matthes, Christian Neubert, and Christian M. Schweda. A Wiki-
based Approach to Enterprise Architecture Documentation and Analysis. 7th Euro-
pean Conference on Information Systems, 2009.

[9] Florian Matthes and Christian Neubert. Wiki4EAM - Using Hybrid Wikis for En-
terprise Architecture Management. 7th International Symposium on Wikis and Open
Collaboration (WikiSym), 2011.

[10] Josef K. Lankes. Metrics for Appilcation Landscapes. PhD thesis, Fakultät für Informatik,
Technische Universität München, Germany, München, 2008.

[11] C. Lucke, S. Krell, and U. Lechner. Critical Issues in Enterprise Architecting - A Lit-
erature Review. Proceedings of the Sixteenth Americas Conference on Information Systems,
2010.

95

http://imagesrv.gartner.com/media-products/pdf/reprints/ibm/external/volume4/article28.pdf
http://imagesrv.gartner.com/media-products/pdf/reprints/ibm/external/volume4/article28.pdf

Bibliography

[12] Florian Matthes, Ivan Monahov, Alexander W. Schneider, and Christian Schulz. To-
wards a unified and confiugrable structure for EA management KPIs. Trends in En-
terprise Architecture Research and Practice-Driven Research on Enterprise Transformation,
2012.

[13] Florian Matthes, Ivan Monahov, Alexander Schneider, and Christopher Schulz. EAM
KPI Catalog v1.0, 2012.

[14] Florian Matthes, Ivan Monahov, Alexander Schneider, and Christopher Schulz. A
Template-Based Design Method to Define Organization-Specific KPIs for the Domain
of Enterprise Architecture Management. DASMA Software Metrik Kongress, 2012.

[15] Ivan Monahov, Thomas Reschenhofer, and Florian Matthes. Design and prototypical
implementation of a language empowering business users to define Key Performance
Indicators for Enterprise Architecture Management. Trends in Enterprise Architecture
Research Workshop, 2013.

[16] Andre Wittenburg. Softwarekartographie: Modelle und Methoden zur systematischen Visu-
alisierung von Anwendungslandschaften. PhD thesis, Fakultät für Informatik, Technis-
che Universität München, Germany, 2007.

[17] Unified Modeling Language (UML), v2.4.1. http://www.omg.org/spec/UML/2.
4.1, 08 2011.

[18] Thomas Büchner, Florian Matthes, and Christian Neubert. Data Model Driven Im-
plementation of Web Cooperation Systems with Tricia. 3rd International Conference on
Objects and Databases, 2010.

[19] Florian Matthes, Christian Neubert, and Alexander Steinhoff. Hybrid Wikis: Em-
powering users to collaboratively structure information. 6th International Conference
on Software and Data Technologies, 2011.

[20] Object Constraint Language, v2.3.1. http://www.omg.org/spec/OCL/2.3.1/,
01 2012.

[21] Paolo Pialorsi and Marco Russo. Programming Microsoft LINQ in Microsoft .NET Frame-
work 4. Microsoft Press, 2010.

[22] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer Program-
ming. MIT Press, 2004.

[23] Michael Scott. Concepts of Programming Languages. Morgan Kaufmann Publishers,
2001.

[24] Anders Heijlsberg and Mads Torgersen. Standard Query Operators Overview. http:
//msdn.microsoft.com/en-us/library/bb397896.aspx, 2013.

[25] Matheus Hauder, Sascha Roth, Florian Matthes, Armin Lau, and Heiko Matheis. Sup-
porting collaborative product development through automated interpretation of arti-
facts. 3rd International Symposium on Business Modeling and Software Design, 2013.

96

http://www.omg.org/spec/UML/2.4.1
http://www.omg.org/spec/UML/2.4.1
http://www.omg.org/spec/OCL/2.3.1/
http://msdn.microsoft.com/en-us/library/bb397896.aspx
http://msdn.microsoft.com/en-us/library/bb397896.aspx

Bibliography

[26] Heiko Matheis. SmartNet Navigator and application guidelines. Sehenth Framework
Programme, 2013. SmartNets - The Transformation from Collaborative Knowledge
Exploration Networks into Cross Sectoral and Service Oriented Integrated Value Sys-
tems.

[27] JFlex - The Fast Scanner Generator For Java. http://jflex.de/, 01 2009.

[28] Roger S. Scowen. Extended BNF – A generic base standard. Software Engineering
Standards Symposium, 1993.

[29] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers. Principles,
Techniques and Tools. Addison-Wesley Longman, 2006.

[30] Beaver - a LALR Parser Generator. http://beaver.sourceforge.net/, 12 2012.

[31] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[32] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994.

[33] elasticsearch - flexible and powerful open source, distributed real-time search and
analytics engine for the cloud. http://www.elasticsearch.org/, 06 2013.

[34] tinymce - Javascript WYSIWYG Editor. http://www.tinymce.com/, 08 2013.

[35] Gilad Bracha and William Cook. Mixin-based Inheritance. Proceedings of the Euro-
pean conference on object-oriented programming on Object-oriented programming systems,
languages, and applications, 1990.

[36] Oren Ben-Kiki, Clark Evans, and Brian Ingerson. YAML Ain’t Markup Language
(YAML) Version 1.1. http://yaml.org/spec/1.1/, 2005.

[37] snakeyaml - YAML parser and emitter for Java. http://code.google.com/p/
snakeyaml/, 01 2005.

[38] Steffen Bartsch. Authorization enforcement usability case study. Proceedings of the
Third international conference on Engineering secure software and systems, 2011.

[39] Paul Andrew. Collaborative Workflow improvements in SharePoint 2010. MSDN
Magazine, 11 2009.

[40] Nahum Gershon and Ward Page. What storytelling can do for information visualiza-
tion. Commun. ACM, 2001.

[41] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified data processing on large
clusters. Commun. ACM, 01 2008.

[42] Caetano Sauer and Theo Haerder. Compilation of Query Languages into MapReduce.
Datenbank Spektrum, 13:5–15, 2013.

97

http://jflex.de/
http://beaver.sourceforge.net/
http://www.elasticsearch.org/
http://www.tinymce.com/
http://yaml.org/spec/1.1/
http://code.google.com/p/snakeyaml/
http://code.google.com/p/snakeyaml/

	Abstract
	Introduction
	Introduction & Motivation
	Enterprise Architecture Management
	Key Performance Indicators
	Motivation & Approach of the thesis

	Foundations
	EAM KPI structure
	General structure elements
	Organization-specific structure elements
	Design method for defining EAM KPIs

	Tricia
	Architecture
	Hybrid wikis

	MxL 1.0
	Fundamentals of MxL 1.0
	Use cases of MxL 1.0

	Shortcomings of existing foundations
	No compile-time analysis of MxL expressions
	Tight coupling between MxL 1.0 and Tricia
	Missing type-based template engine in Tricia
	Insufficient deployment support in Tricia

	Contribution of the Thesis
	MxL 2.0
	Fundamentals of MxL 2.0
	MxL 2.0 types
	Basic language constructs
	Higher-order functions in MxL 2.0
	Sequence functions
	MxL Asset Hierarchy
	Querying the information model

	Interpretation
	Scanner & Parser
	AST & Expression objects
	MxL Connector
	Type Checker
	Evaluation engine

	TxL 2.0 - MxL 2.0's implementation in Tricia
	MxL Connector for Tricia
	Basic MxL infrastructure in Tricia
	Derived attributes and custom functions
	Embedded expressions
	Compile-time analysis of MxL expressions in Tricia

	Towards Living KPIs
	Implementation of a type-based template engine
	Existing template engine
	Type-based template engine
	Example of a page template

	Deployment of Tricia applications
	Existing import types
	Initial data definition
	Initial data processing
	Back tracking of changes on initial data sets

	Prototype of the Living KPIs
	Implementation of KPIs as MxL 2.0 custom functions
	Page template for EAM KPI descriptions
	EAM KPI Catalog data

	Results
	Summary & Conclusion
	Summary
	Conclusion

	Outlook & Future research
	Authorization in MxL 2.0
	Problem / Open issue
	Proposed solution

	Evaluating identity
	Problem / Open issue
	Proposed solution

	Evaluation strategy
	Problem / Open issue
	Proposed solution

	History of evaluation results
	Problem / Open issue
	Proposed solution

	Visualization of evaluation and type checking results
	Problem / Open issue
	Proposed solution

	Query processing
	Problem / Open issue
	Proposed solution

	Fully supported Living KPIs
	Problem / Open issue
	Proposed solution

	Bibliography

